
ampus
ITIetwork SEL-C.

ADA103394 DTIC

* AN IP SERVER FOR NSW

1>nivers 1ty of

ali~fornia,

geles1 8 26 ()84 V

SECURITY CLASSIFICATION OF THIS PAGE (Whoin 0.,. yrfr-d)

READ INSTRUCTIONS-REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

J-KOTNUM RER_ 2OVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

CCN/TR7 '. 3ciY
4 lYE (nd Sh~..)S TYPE OF REPORT IS PERtIOD COVERED

','Semi-annual Technical ReportL

AN- EVE O S 6. PERFORMING OR. REPORT NUMBER

7. AUTHORs)

R. / Irde
H. C./Ludlam MDA 903-74-C-0083/

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT. PROJE TASK
AREA II WORK UNIT NUMUE S

Campus Computing Network Program Code 0P10
UCLA C0012 < ARPA Order M._-2543J3
Los Angeles, California 90024_______________

1 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Reserch ProetsAgnyptL4k7
1400 Wilson Boulevard AgencyACT
Arlington, Virginia 22209 90

7-4 MONITORING AGENCY NAME & ADORESS(if different from Controllipj Office) 1S. SECURITY CLASS. (of this report)

I-.---NONE
1s. OECLASSIFICATION'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution unlimited

.4 t .

17. DISTRIBUTION STATEMENT (of the abstract entered In, Block 20. if different from Report) - -,L

I11. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessury and identify by block number)

ARPANET protocol, National Software Works, Batch Tool-Bearing ot
Qeneralized. Remote Job Entry protocol, file transfer, IBM 360 impemntti
program logic. ipeettoI

20. ABSTRACT (Continue on revere aide it necessary and identify by block number)

-SEE OVER-- .-...

DD ,0A1,,1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 102LF-14-601SECURITY CLASSIFICATION OF TNIS PAGE (Whien Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Datea Entered)

! --This report describes an ARPANET remote job entry facility developed
by UCLA-CCN as part of the National Software Works ("NSW") project,
making the CCN 360/91 a kbatch tool-bearing hostV for NSW. The
implementation of this facility is based on a server process for the
interim NSW protocol IP, which was originally designed for Tenex-to-B4700
batch job control. The main component of the IP Server at CCN, the
Message Processor or MPO, is largely written in PL/l and runs as a
#pseudo-userA under TSO. '

I
I

SErCUNITY CLASSIFICATION OF THIlS PmAOE(MI*n Dma Entered)

AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7

University of California at Los Angeles
405 Hilgard Avenue,

Los Angeles, California 90024

CAMPUS COMPUTING NETWORK

Semiannual Technical Report

AN IP SERVER FOR NSW

R. T. Braden
H. C. Ludlam

CCN/TR7

April 1, 1976

This work was sponsored by. the Advance Research Projects
Agency of the Department of Defense, under Contract Number

MDA903 74C 0083, order 2543/3.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

REPORT SUMMARY

This report describes an ARPANET remote job entry
facility developed by UCLA-CCN as part of the
National Software Works ("NSW") project, making the
CCN 360/91 a "batch tool-bearing host" for NSW. The
implementation of this facility is based on a server
process for the interim NSW protocol IP, which was
originally designed for Tenex-to-B4700 batch job
control. The main component of the IP Server at
CCN, the Message Processor or "MP", is largely
written in PL/l and runs as a "pseudo- user" under
TSO.

The evolution of the IP protocol is discussed in
Section 1, and the protocol is fully defined in
Section 2. Section 3 gives a general description of
the CCN IP Server implementation, while the program
logic of MP is described in detail in an appendix.

Implementation of this IP Server program has allowed
the 360/91 to provide a useful computing capability
for NSW users. It will provide experience with
batch job control under NSW and an interim operating
capability in advance of the specification and
implementation of the full NSW mechanism -- MSG,
File Package, and Foreman.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
express or implied, of the Defense Advanced Researcn Projects
Agency or of the United States Government.

.1

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

TABLE OF CONTENTS

1. INTRODUCTION............. . 1
1.1. UCLA/CCN AND NSW 1
1.2. BATCH SUBMISSION UNDER NSW 2
1.3. THE EVOLUTION OF IP 5
1.4. PROTOCOL DESIGN CONSIDERATIONS 10
2. NETWORK IP PROTOCOL DEFINITION 14
2.1. BASIC DESIGN OF IP 14
2.2. THE CATALOG SUBSYSTEM 17
2.3. THE FILE TRANSFER SUBSYSTEM 19
2.4. THE WORK ORDER EXECUTIVE SUBSYSTEM 25
2.5. THE SYSTEM MESSAGE SUBSYSTEM 27
3. IMPLEMENTATION OF THE CCN IP SERVER 29
3.1. GENERAL STRATEGY 29
3.2. SYSTEM INTERFACES 30
3.3. NCP INTERFACE PROCESS IPTASK 32
3.4. CCN MESSAGE PROCESSOR MP 34
4. CONCLUSIONS 40
5. ACKNOWLEDGMENTS 416 RE E CS. 4
6. REFERENCES 42

7. APPENDIX A -- IP MESSAGE SUMMARY 44
8. APPENDIX B -- CCN IMPLEMENTATION DEPENDENCIES 49
9. APPENDIX C-- MP PROGRAM LOGIC........ 54
9.2. LOGIC OF ASYNCHRONOUS ROUTINES 55
9.2.1. THE EXIN FUNCTION 55
9.2.2. THE EXOUT FUNCTION 56
9.2.3. THE FTS FUNCTIONS 57
9.2.4. THE NOTIFY FUNCTION 61
9.2.5. THE STATUS FUNCTION 61
9.2.6. THE OPR FUNCTION 62
9.2.7. THE GENERAL FUNCTION 62
9.2.8. THE TIMER FUNCTION 65
9.2.9. SUMMARY OF ASYNCHRONOUS DEPENDENCIES 66
9.3. LOGIC OF SYNCHRONOUS ROUTINES 68
9.3.1. EXCHANGE MANAGEMENT PACKAGE 68
9.3.2. JOB MANAGEMENT PACKAGE 68
9.3.3. DATA SET MANAGEMENT PACKAGE 71
9.3.4. BUFFER MANAGEMENT PACKAGE 72
9.3.5. COMMAND MANAGEMENT PACKAGE 74
9.3.6. JOURNAL MANAGEMENT PACKAGE Sc ioti ** 76
9.3.7. PARAMETER MANAGEMENT PACKAGE OTIS" 2'T "77
9.3.8. TIMER MANAGEMENT PACKAGE . " 77
9.3.9. MISCELLANEOUS SERVICES . " " .* ., 78
9.4. MP EXECUTION FILE REQUIREMENTS 81
9.5. MP EXECUTION PARAMETERS 82
9.6. INSTALLING MP 85

J I

- -............................. *

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 1

1. INTRODUCTION

1.1. UCLA/CCN AND NSW

The UCLA Campus Computing Network is the general-purpose
central computing facility for UCLA, operating an IBM 360
Model 91 CPU with 4 million bytes of main memory. Software
service systems on this machine include (Ref. 1):
batch-processing under the IBM operating system OS/MVT, a
fast-batch subsystem called QUICKRUN, the APL time-sharing
system, IBM's general- purpose time-sharing system TSO, and
a display-based conversational remote-job-entry system
called URSA.

User access to CCN is via self-service unit-record
equipment locally, medium-speed binary synchronous remote
job entry ("rje") terminals, ASCII and IBM 2741 typewriter
terminals for TSO and APL, IBM 3270 and CCI CC301 display
terminals for URSA and TSO, and the ARPANET.

CCN has provided service to ARPANET users since 1971, using

the following Network protocols:

* A "private" Network-rje protocol called NETRJS;

* Server-TELNET access to TSO;

* an FTP Server.

The National Software Works ("NSW") is attempting to create
a centralized accounting, management, and file system as
well as a uniform flavor of command language spanning a
number of server host computers on the ARPANET. The NSW is
intended to give government application programmers ready
access to the rich variety of software tools which are
available, or potentially available, on ARPANi.'r server
hosts. The NSW access control, file cataloyinri. and
accounting functions are centralized in a program called
the Works Manager, or "WM".

NSW server hosts are called Tool-Bearing-Hosts or "TBH"'s
in NSW parlance. As part of the overall NSW effort, the
UCLA Campus Computing Network is charged with making its
IBM 360/91 a TBH. The particular strengths of the CCN
machine are (1) its large batch-processing computational
power, and (2) the large number of tools written for the
IBM 360 systems. As a result, first priority for the NSW
effort at CCN has been assigned to making the 360/91 a
batch TBH; the implementation of interactive tools under
TSO has been deferred until later.

I I

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 2

During the period covered by this report, CCN nas developed
and demonstrated an interim batch TBH capability. This
report describes this implementation, which is basically a
server for the Network IP protocol. The history and
development of the IP protocol are described in the
remainder of Section 1. Section 2 contains a complete
definition of IP as implemented between the prototype WM
and the 360/91 at CCN. Section 3 describes the program
organization of the CCN implementation.

1.2. BATCH SUBMISSION UNDER NSW

Under NSW, a "batch tool" is one which is executed in the
background, leaving a foreground (interactive) user free

for other work (see Ref. 2). Furthermore, for efficiency
many batch hosts (including CCN) require that input files
for batch tools be *pre-staged". That is, before a batch
job can be "submitted", i.e. added to the batch processing
queue of a batch host, all of its input files must be made
resident in that host's local file space.

To cause a batch tool to be executed, an NSW user will
interact with a program in the Works Manager called the
Interactive Batch Specifier, or IBS. It is the function of
IBS to query the user for the names of all input files,
resource limits, etc., and to build tables describing the
job. When the job description is complete the IBS passes
the tables to the WM and exits, allowing the user to enter
another interactive program while WM runs the job in the
background. The user can query the WM for the status of
his jobs, or the WM may send him a message when output from
a job is available for viewing from his console.

Batch job execution under NSW is actually controlled by a
WM process called the Works Manager Operator, or "WMO".
When a new batch job is specified by a user, the WM passes
the description of the job to the WMO, which maintains
tables of all batch jobs currently in progress. The WMO
invokes primitive operations at the batch TBH's to cause
these jobs to be processed.

In order to fully function as a batch TBH, a host will be
required to implement primitive operations which are
conceptually equivalent to the following:

I'

I.

A
* AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7
PAGE 3

* File Transfer operations --

Send a file over the Network to the TBH:

SEND(<local file name>, <file>)

GET a file from the TBH over the Network:

GET(<local file name>-> <file>) ;

Create a new file on the TBH;

CREATE(<file attributes> -> <local file name>)

Delete a file on the TBH:

DELETE(<local file name>);

Check existence and attributes of a file:

FIND(<local file name> -> <file attributes>)

Rename a file on the TBH:

RENAME(<old local name>, <new local name>

Local file copy:

LOCALCOPY(<local file name >,<local file name>

* Job Submission and Deletion --

Submit a Job, i.e. cause a specified local file to be
interpreted as a job-control stream by the TBH
operating system:

SUBMITJOB(<local file name> -> <job name>)

Delete job from the tables and queues of the batch
system.

DELETEJOB(<job name>)

* Job Completion Signals and Status Query --

Spontaneously notify the WM when batch job output is
ready for retrieval;

-> <status=done>

Answer queries on job status:

Ui

-fr * ,

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 4

STATUS(<jobname> -> <status>

We can use a traditional remote job entry scenario as an
example to illustrate the use of these primitive operations
by the WMO. Suppose a batch job is to be run with one
input file containing both job-control commands and data,
and one output file. The WMO could use the following

sequence:

CREATE(<input file attributes> -> <input file name>) ;

CREATE(<output file attributes> -> <output file name>);

The WMO would use the <input file name> and <output
file name> returned by the TBH to complete the JCL in
<input file> in a TBH-dependent manner. Then it would
continue:

SEND(<input file name>, <input file>) ;

SUBMITJOB(<input file name> -> <jobname>)

The WMO may periodically poll for completion by sending
STATUS messages, or may await a spontaneous Job-Done
message from the TBH. In either case, when the output
is available it executes:

GET(<output file name> -> <output file>

DELETE(<input file name>) ,

DELETE(<output file name>

DELETEJOB(<job name>)

The NSW batch primitives listed earlier allow much more
complex scenarios tnan this. For example, many batch tools
will need multiple input and/or multiple output files.
Often only one of the input files will vary from one run to
the next, so Network usage and delays can be significantly
decreased by keeping local copies of the invariant files at
the batch host. Similarly, the user may not want to see all
of the output files from a particular tool, and those he
doesn't want need not be transmitted across the Network.
In summary, the NSW primitives for batch TBH are more
general than those of a traditional rje server, in that NSW
logically separates the file-transfer functions from job
submission/deletion functions.

4.

I

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 5

1.3. THE EVOLUTION OF IP

Network IP was designed as a prctocol for the WMO to use to
request primitive operations of a batch TBH. IP allows WMO
to invoke all of the primitives listed above except local
copy. It was felt that local copy could be omitted from the
interim protocol, as real batch tools seldom clobber their
input files (and in fact, the local operating system may
enforce read-only access under control of the JCL). The
interim batch TBH service at CCN is based upon an
implementation of a server for the IP protocol. Figures
1-3 illustrate the three stages in the evolution of IP for
this purpose.

IP was originally designed by Tom Hamrick of Science
Applications, Inc., and by Charles Muntz of Massachusetts
Computer Associates, in order to make the Burroughs B4700
at Gunter AFS a batch TBH. As shown in Figure 1, the
original strategy was to move as much of the Network NCP
and File Package as possible out of the B4700, which is
ill-equipped for such adventures, into a PDP-lI/45. Thus,
the PDP-11 was to act as a "front-end" machine for Network
I/O (and incidentally was also to serve as a front-end in
an entirely different sense: the user interface into NSW).

Thus, the NSW rje interface to the B4700 was to be split
into the Network-protocol front end, and a relatively
simple "back-end" with system calls and hooks within the
B4700. The PDP-11 is connected to the B4700 through a
local Binary Synchronous link, over which a simple
command/response protocol is used; this latter was named
"Interface Protocol", or "IP". Within the B4700 there is a
system job that is a server for IP, simply translating the
IP commands into system calls. As originally defined,
therefore, IP was specific to the B4700 system.

AN 12 SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 6

Figure 1 12 as Local Protocol Between PDP-11 and B4700

T E NEX G UN TE R AF S
P DP - 10 P DP-l B4 70 0

XXXXXXXXXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxx
x x xxxxxxxxxxxxxx x x
x x x x x x
x x x x x x
x XXx ------------ xx X --------- X
x ----- :x (PCP> x ---------- x(IP) x X
x WORKS :x Protocol x : x X I P x
x:MANAGER NSW :(---------------- NSW : x x
x OPERATrOR:- Inter--- -------------- >:inter- :<(------- >: SERVER x

x : host x ARPANET x :host :x :X
x :(WMO) Proto- x x :Proto-: x L L x : Program x
x : col x x col x o i x : :x
x -------- x x x ---- x c nx x
x ------ x x x a k x :---------- x
x x x xlI x x
x x xxxxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxx

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 7

Figure 2 IP Extended Across ARPANET to WMO Host

T E N E X G U NT 9R AF S
P DP-1 P DP - 11 84 7 00

xxxxxxxxxxxxxxx

xx x X x:------x

x: WOK x x ::x x : PX
X MAAE -------- Nok x x x
x OEAO :- SR--------------->itr ------ - ----- SEVR :x
x: --PROC-SS: x ARPANET x face:- xIP x : X
X W~OKS : x X x x I: x

X ---- :X X :------- :X x :x
x : ------ x x x X --------- :x
x X X X X X
x X K X K x
xxxxxxxxxxxxxxxxKxxxx xxxxxxxxxxxxx xxxxxxxxxxxxxxx

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 8

Figure 3 Network IP Server Inplemented on 360/91

T E N E X U C LA CCN
P P- 1 0 3 6 0 /9 1

xxxxxx xxxx xxxxxxx xxx xxxx xx x xx xxxx x

xxxxxxxxxxxxxxxxxxxxxxxxxxx x x
x g, tox

x x x x
x -- - -- - x x -- - - - x
x ------- x <NETIP> x-----------CCNIP> x
x: WORKS :x x I P IP

x MANAGER I P < <-------------:Network:<(---------: :x
x OPERATOR:: USER----------------- >:inter--- -------- >: SERVER x
x :PROCESS: x ARPANET x :face :Exchange: x
x : (WMO) ::x x :*x
x ----- x x ----- x
x -- - -- - x x NCP --- - -: x
x x x >: TCAM : x
x x x (pseudo-user) :---------: x
xxxxxxxxxxxxxxxxxxxxxxxxxxx x TSO Job x

x x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

XXXXXXXXXXXXXMXXXXXXXXXXXX1
XXXXXXXXXXXXXXXXXXXXX, X.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/rR7

PAGE 9

This initial approach ran into difficulties, because the

PDP-l1 hardware/operating system combination was unable to
support the large amount of code and tables required.
Furthermore, there were some delays in development of the
necessary interhost protocols. As a result, the model
shown in Figure 2 was adopted for NSW. The processing
functions which could not be handled in the PDP-11 were
moved into the PDP-10 (Tenex) system on which the prototype
WMO was running. The IP protocol was thus "stretched" over
the ARPANET from the PDP-11 to the PDP-10 (Ref. 4),
reducing the PDP-11 to the role of a full-duplex IP
pipeline between the B4700 and the ARPANET.

It was realized at CCN that the IP Network protocol used to
implement Figure 2 could be used for any batch host.
Analysis of IP revealed that, although it was dependent in
some details on the B4700, it could be easily mapped into
IBM's OS/360 operating system. While the file system of
the B4700 is much simpler than that of OS/360, both systems
contain the same concepts: logical and physical records,
blocking factors, space allocation in discrete glumps, and
ASA carriage control for print files.

These considerations led finally to the model of Figure 3,
whose implementation on the 360/91 has provided an interim
remote job entry capability for NSW. The 360/91 is a large
machine with a complex multi-tasking operating system, and
is easily capable of supporting both the Network interface
(Network Control Program, or NCP; see Ref. 5), and the IP
Server Message Processor, or "MP". The CCN-developed
interprocess-communication facility, the "Exchange" (Ref
6), provides a convenient mechanism for passing data
between MP and the NCP. The design of the CCN IP Server
program is described in Section 3 below.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 10

1.4. PROTOCOL DESIGN CONSIDERATIONS

Although the original definition of IP was basically
suitable, some changes in the protocol were required.
These changes were negotiated between Charles Muntz of MCA,
who wrote the IP User program, and CCN. Some changes were
trivial generalizations of B4700-specific protocol details.
For example, file names had to be lengthened, to handle the
44-character names allowed in OS/360; job names had to be
allowed in place of job numbers; and much larger blocking
factors had to be allowed (typically 44 records-per-block
on the 360, compared with 5 on the B4700). In addition,
however, some significant protocol issues arose, mainly in
the area of reliability and recovery from failures of user
and/or server host. We will now discuss these protocol
issues in IP. Section 2 below contains a complete
definition of the resulting protocol.

1.4.1. NETWORK CONNECTIONS

As a result of its orientation towards a mini-host (the
PDP-II), IP assumes that the Server process is
"listening" on a fixed pair of sockets for the User

process to make a connection. For simplicity this model
was maintained, and a pair of sockets was chosen that
doesn't conflict with ICP sockets or CCN socket
allocations: 258 and 259. The Server is completely
passive; he only listens for RFC's on these sockets. The
IP User process (i.e. the WMO) must initiate the
connections by sending RFC's. If the Server does not
respond, the User process must time out, wait a
reasonable interval, and try again.

Another question which arose was whether to keep the
User-Server connections open "permanently" or to let the
User close them when there are no jobs in progress. The
latter choice was made, although it is not a very
critical issue; the only expensive system resource tied
up at CCN is the input buffer in the NCP.

1.4.2. TIME AND CHARGES

There was concern that IP provided only one "shot" at
returning the time and charges for a batch job to the WM,
namely an asynchronous (unsolicited) Job-Done message.
There is a small but significant probability that this
message will be lost due to User or Server crashing at
the wrong moment. The WM must be able to keep an
accurate accounting of job charges, and this requires
that charges be reported to it in a reliable manner. To
improve this reliability, MCA changed the WMO to tolerate
multiple copies of the same Job-Done message, and the CCN
Server was designed to resend the Job-Done message

.1

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 11

containing time and charges under the following
conditions:

* when the WMO requests status for a job for which a

Job-Done message has already been sent (presumably, WMO
would not request status if he had already received a
Job-Done message);

* when the Server receives a SYS Reset message and has
batch output which the WMO has not yet retrieved.

These changes did not however solve the entire problem.
For a long-running job, CCN takes 'check-point'
accounting records; if the system crashes before the job
terminates the user is actually charged for the cost
accumulated at the last accounting checkpoint. If NSW is
to support very large jobs, the WM must be kept informed
of the accumulation of job charges. CCN takes an
accounting checkpoint roughly every ten minutes of CPU
time (actually every 1000 MUS, where MUS is the time-like
machine resource-utilization measure at CCN). We changed
the IP reply message to the Job-Status probe to include
time and charges. The WMO can easily probe the status of
jobs at CCN once a minute without undue overhead, and the
reply keeps it informed of the accumulation of job
charges.

1.4.3. RESYNCHRONIZATION

To bring the IP User and Server processes back into
synchronism after a crash, an IP SYS Reset message was
introduced. The WMO sends a SYS Reset message whenever
it comes up, or whenever it reconnects to the Server
after the latter has been down. Upon receiving a SYS
Reset message, the Server reinitializes itself and tnen
echoes the SYS Reset. The two ends should now be
synchronized.

Since the User side may go down at any time, the Server
may get a SYS Reset message, for example, while a
data-transfer is in prgress. In this case, the Server
must terminate the transfer as if he had gotten an FTS
Delete Transfer message (which includes scratching any
partially-written file at CCN) and then reinitializes
itself.

After echoing the SYS Reset message, the Server checks
for any NSW job output waitinq for retrieval; if any
exists, he resends the Job Done messages for these jobs,
as discussed above.

I
I

-- ~1.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 12

1.4.4. JOBNAMES

It is necessary that WMO and the IP Server keep their
active-job tables in agreement with each other. It is
very easy to generate scenarios wherein crashes at one
end or the other cause confusion about which jobs exist
in the system, and about the IP names of these jobs. The
WMO internally uses a number (table index) for keeping
track of active jobs. As a result of a Submit Job
message, the Server returns a (unique) 8-character name
for the submitted job, and the WMO records this in its
table for later use. The Server, on the other hand, may
have its own tables of active NSW batch jobs. In turn,
the IP Server has to keep its job table in synchronism
with all batch job tables internal to the operating
system.

After discussion between CCN and MCA, it was decided to
circumvent the problem of job table synchronization in
the following manner. The WMO internal job number was
added to the Submit Job message, to be used by the IP
Server at CCN to create unique job names for NSW jobs.
The Server would not have a job table, thus (in theory)
eliminating the problem of table synchronization. A
batch job at CCN is entered in various OS/360 tables as
it moves through the stages of batch execution, but as
long as each job has a different name, no confusion can
arise.

It was assumed that the WMO would have a reliable data
base for its job taole, so it would reliably furnish
unique numbers. It should be noted that this approach
will work badly if the WMO does not in fact have a
reliable data base, and as a result reuses job numbers;
when it erroneously sends a Submit-Job message specifying
a job number which is still in use, the WMO will get back
the Job Refused by TBH message from the Server. Recovery
from this situation may be very difficult or at least
awkward for the WMO. Further consideration of these
issues is desirable.

1.4.5. JOB OUTPUT FILES

For the B4700, the WMO has to create the output file(s)
for a job (to complete the JCL) before submitting the
job. There was some concern about using this approach
for the 360, whose operating system requires that disk
space be (at least partially) reserved when the file was
created. Therefore, considerable disk space could be tied
up in the job output reservations while jobs awaited
execution.

~.1

... l ll -il . " a i .Zi ni . . i

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 13

We therefore adopted a model which is more natural to the
CCN system. A batch job writes its output into a large
pool of transient disk space ("SYSDA") available to all
jobs, and after termination a system process transcribes
the output into a file with a standard name

("OUTPTT.<jobname>") in another pool of disk space. The
WMO can retrieve this latter output file knowing the
<jobname> which was returned at Submit-Job time. It

should be noted, however, that the CCN implementation
(see Appendix C) does include hooks necessary to follow
the B4700 IP definition, should that turn out to be more
appropriate.

The IP protocol as modified is fully defined in the
following section as well as Appendices A and B.

4

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 14

2. NETWORK IP PROTOCOL DEFINITION

2.1. BASIC DESIGN OF IP

IP was originally described in documents distributed by
Charles Muntz of MCA (see Ref. 4, Ref. 11). This section
is adapted from those documents by appropriate editing. IP
as described here is an Interim Protocol for communication
between the NSW Works Manager Operator (WMO) and the IP
message processor (MP) on a large-scale Batch Tool-Bearing
Host (BTBH) such as the UCLA CCN system.

2.1.1. USER/SERVER RELATIONSHIP

MP is strictly a server. When sent a message it usually
produces a single "response" message. WMO is strictly a
user. It has no obligation to respond to MP messages,
and normally expects a single response to each messge it
transmits.

There are exceptions to the one-request/one-response
convention. MP does not respond to each unit of file
transfer that it receives. Likewise, all units of a
single file transfer that MP passes to WMO are considered
responses to a single message.

MP can also send "unsolicited" messages to WMO. Such
messages arrive with a zero "handle" (see below) and are
immediately recognizable by WMO. These messages become
interrupts to WMO processes supervising the MP
operations. Currently, three such messages are defined:
Job Done, and two kinds of requests to terminate service.

2.1.2. MESSAGE FORMAT

In IP a "byte" is an arbitrary bit pattern, while a
"character" is selected from a limited ASCII character
set which is quite digestible by record-oriented systems
like OS/360; it specifically excludes the format
effectors CR, LF, TAB, FF, EOL, etc. Rather, (optional)
format of ASCII records is specified as an ASA format
code in column 1 of each record (see the discussions on
file transfers for more detail).

All IP messages (both request- and response-type) have
the same format: an 8-byte header followed by a variable
length portion. Using a PL/I-like notation, an IP
message looks like:

1 MESSAGE,

4, * ;..~**~* ,~'- **.*

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

J PAGE 15

2 HEADER,
3 SUBSYS CHAR(1),
3 FUNCTION CHAR(l),
3 HANDLE BIT(16),
3 MODIFIER CHAR(2),
3 DATALENGTH BIT(16),

2 VARIABLEPART CHAR(DATALENGTH)

Where:

* SUBSYS is a character as follows:

A - File Transfer System (FTS)
8 - Catalog System (CAT)
C - Work Order Executive (WOE)
Z - System Messages (SYS)

* FUNCTION and MODIFIER are characters (3 in all) used to

request particular functions of the subsystem.

* HANDLE associates messages with processes and is a

two-byte integer.

* DATALENGTH is a two-byte integer that specifies the

length of the variable part.

* VARIABLEPART is a string of characters or bytes, the

length of which is determined by DATALENGTH. Its
contents are determined by SUBSYS, FUNCTION, and
MODIFIER.

2.1.3. HANDLES

The network connection between MP and WMO is viewed by
them as a single pair of physical channels; however, MP
consists of several asynchronous processes. WMO assigns
a unique (mod 2**16) handle to each request sent to MP so
that MP can process several requests concurrently. MP is
expected to return the request handle in the HANDLE field
of the corresponding response(s) so that WMO can
establish the correspondence. Each message is assigned a
handle one greater than the previous message. The handle
of the IP message following a WMO cold start is i, as is
the handle of the message following one with a handle of
2**16-1. Zero is a reserved value; it identifies an
unsolicited message.

2.1.4. MESSAGE DESCRIPTION NOTATION

For the purposes of detailing the format of described
messages, we will use the notation:

aj

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 16

CAT(fn,modifier,vwriable part)

* FTS(fn,modifier,variable part)

* WOE(fnmodifiervariable part)

* SYS(fn,modifier,variable part)

where:

fn is a character,

modifier is two characters,

variable part is a BNF metavariale, descri^ed in
Appendix A.

Unsolicited messages are indicated by an asterisk
appended to the IP subsystem name; e.g. SYS*(3,00,) is
an unsolicited message requesting service termination.
All other messages have non-zero handles assigned as
described earlier.

- 4.. *., -~ . -

AN IP SERVER FOR NSw
April 1, 1976 -- CCN/TR7

PAGE 17

2.2. THE CATALOG SUBSYSTEM

The NSW local file catalog, as envisioned by IP, consists
of a directory of unique file names. This directory is
partitioned according to IP server ID, since it is intended
to allow the possibility of a single TBH site serving more
than one WMO. Thus there are two representations of a file
name, and these may generally be used interchangeably:

* The simple name, which does not include the IP server ID,

is a string of characters, organized as one or more index
levels delimited by periods. Each index level consists
of one to eight alphanumeric characters, the first of
which must be alphabetic (in an IBM implementation
"alphabetic" will include "@", "#", and "$") . The total
simple name may not exceed 33 characters.

* The qualified name is formed by prefixing the simple name
with the t~windex levels which constitute an IP server
ID. It is then distinguished from a simple name by being
enclosed in single quote marks, without internal blanks.
The total qualified name may not exceed 46 characters,
counting the quotes.

Conceptually, the directory associates three numeric file
allocation attributes with each file:

* The Logical Record Size in Characters (LRSC);

* The number of Records Per Block (RPB);

* The Number of RECordS (NRECS) -- this represents the
average number of records that the file is expected to
hold, and has no bearing on the number of records
actually contained in the file at a given moment.

Negotiation with the catalog system consists of reading or|
setting file names and attributes, never file contents.
Currently, four basic functions are supported by CAT:

2.2.1. READ FILE NAME

CAT Read File Name tests the file directory to see if a
particular file exists there. If so, it returns its
allocation attributes. The formats of this message and
its replies are:

Read File Name = CAT(0,00,<file name>)

File Present = CAT(0,00,<file spec>)
File Not Found = CAT(0,82,(file name>)
MP I/O Error = CAT(0,88,<file name>)

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 18

2.2.2. ENTER FILE NAME

CAT Enter File Name creates a new file on the server
system, enters its name in the local directory, and
returns the actual name, which need not have been fully
specified by the user system. LIRSC, RPB, and NRECS are
supplied by VMO. The file is given an initial space
allocation based on NRECS, but it is initially empty.

The file name requested may optionally contain up to I

seven occurrences of the "wild" character Question M~ark.
CAT is free to substitute any alphanumeric character in
order to create a unique name, so wild characters should
not be used as the first characters of any index level.
The name actually used will be reflected in the normal
File Entered response.

The formats of this message and its replies are:

Enter File Name = CAT(l,00,<partial file spec>)

File Entered = CAT(l,@0,<file name>)
No Space = CAT(l,84,<partial file spec>)
Duplicate Name = CAT(l,86,<partial file spec>)
MP I/O Error = CAT(0,88,<partial file spec>)

2.2.3. PURGE FILE

CAT Purge File deletes a file, removing its entry from
the directory. The formats of this message and its
replies are:

Purge File = CAT(2,00,<file name>)

File Purged = CAT(2,00,(file name>)
File Not Found = CAT(2,82,(file name>)
MP I/O Error = CAT(2,88,<file name>)

2.2.4. RENAME FILE

CAT Rename File renames the (existing) file specified in
the first name to the (non-existent) second name. The
formats of this message and its replies are:

Rename File = CAT(3,00,<file name pair>)

File Renamed = CAT(3,00,(file name pair>)
File Not Found = CAT(3,82,<file name pair>)
Duplicate Name = CAT(3,86,<file name pair>)
MP I/O Error = CAT(3,88,<file name pair>)

I' *, -

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 19

2.3. THE FILE TRANSFER SUBSYSTEM

2.3.1. GENERAL CONCEPTS

There are two basic File Transfer operations: SEND and
GET. We refer to the "passer" as the process which is
sending records to the "receiver". During a SEND, WM1O is
the passer and MP is the receiver. During a GET the
roles are reversed.

There are five transfer channels defined by FTS. Each
channel may be engaged in a GET or SEND operation
independently of the others. Thus up to five
simultaneous file transfers may be in progress at any
time.^^

Every file transfer in IP is done in two stages:

* Negotiation with the local file directory, using CAT.
CAT never reads file contents but is solely concerned
with reading and writing the directory.

* Transfer of file contents by a transfer of each logical
record using FTS. It is intended that FTS change file
contents only, and never the directory. However, two
exceptions occur: the virtual datum NRECS may be

4 changed when a file is overwritten; and a data set may
be deleted in response to certain error conditions
arising in FTS.

2.3.2. FILE FORMATS

IP deals only with sequential files consisting of 8-bit
bytes organized into fixed-length records. The intent of
FTS is to ensure that:

* Any supported TBH file can be copied by IP with enough
information so that it could be restored - as in an

archival system.

* Supported files can be shared among tools on different
types of TBl-'s.

2.3.3. RECORD FORMATS

IP files are classified into three types. Within a file
of a given type, all records obey certain formatting
conventions;

* A-format (ASCII)

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 20

An A-format record contains 0 <= n <= LRSC ASCII
characters. It is the passer's responsibility to
remove trailing blanks, and the receiver's
responsibility to restore them when appropriate. In
any case, it is always MP's responsibility to translate
between ASCII and EBCDIC at the appropriate times.

* F-format (Formatted ASCII)

An F-format record is identical to an A-format record.
However, the first character (expressed or implied) is
an ASA format code. No other format effectors are
permitted. If the TB- operating system supports this
type of formatting, as will be the case in an IBM
implementation, MP translates the tirst character
exactly as it does the others.

* 8-format (Binary)

A B-format record contains precisely [LRSC binary bytes.
All 256 bit patterns are permitted, and no translation,
truncation, or padding is performed by either system.

2.3.4. BASIC SEQUENCE OF SEND

Transfer of logical records of a file is an exception to
the one-request/one-response rule of I2; receipt of data
does not cause the receiver to return an 1P message, but
simply to ask for the next message(s). The actual
sequence during a normal SEND operation is as follows,
assumming required CAT operations have been performed:

* WMO requests a transfer channel for a send operation.

* MP responds with a channel number.

* WMO sends records; MP stores records.

* WiMO sends an end-of-file indicator.

* MP closes the file and confirms a successful transfer.

* WMO receives the confirmation, completing the transfer.

Every message passed by WMO has a new handle, and r4P
responses use the handle of the last WiMO message. Note
that once the transfer has begun, WMO will not expect to
hear from MP until after end-of-file is indicated. I/O
errors or service interrupts will change this, however.
Exceptional conditions on either system are handled by
transmitting a Delete Transfer message to the other
system. For WMO errors, this message is sent instead of
the next data record or the end-of-file. For MP errors,
it uses the handle of the last received WMO messaqe. .

AN 1P SERVER FOR NSN
April 1, 1976 -- CCN/TR7

PAGE 21

This means that WMO must listen for responses even when
none are required. After an abort, MP will simulate CAT

Purge File on the output data set.

2.3.5. BASIC SEQUENCE OF GET

The sequence during a normal GET operation is as follows:

* WMO requests a transfer channel for a GET operation.

* MP responds with a channel number.

* MP sends records; WMO stores records.

* MP sends an end-of-file indicator and terminates the

transfer.

* WMO receives the indicator and terminates the transfer.

Because only one WMO message is involved, only one handle
is used. This handle is replicated in all messages
passed oy 142. Errors are handled similarly to those
under SEND. t4P must listen for possible Delete Transfer
messages, and should one arrive, the new handle will be
used by 142 until the channel is successfully freed.
Likewise, MP may pass a Delete Transfer message if a
local error occurs.

2.3.6. RESYNCHRONIZING AFTER ERRORS

In order to keep 14P and WMO synchronized accross all
possible events during a file transfer, it has beenL
convenient to define a finite-state machine modelling the
behvior of an FTS transfer channel, once it is actively
involved in a GET or SEND operation. The following model
is condensed from MCA working papers (see Ref. 12). It
applies to both WMO and 142. We assume the initial state
is either PASSING or RECEIVING.

PASSING state:

Local Error: Close file,
Send Delete Transfer,
-- > RESYNC state.

Msg from Receiver: Close file,
Seno Transfer Deleted,
-- > IDLE state.

End of File: Clos~e file,
Send Normal EOF,
If WMO -- > CLOSING state,
If MP -- > IDLE state.

Ii (otherwise): Send data record.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 22

RECEIVING state:

Local Error: Delete file,
Send Delete Transfer,
-- > RESYNC state.

Delete Transfer: Delete File,

Send Transfer Deleted,
-- > IDLE state.

Normal EOF: Close File,
Send Transfer Complete,
-- > IDLE state.

Data Record: Write record and free buffer.

CLOSING state (exists only at WMO):

Transfer Complete: -- > IDLE state.
Delete Transfer: Send Transfer Deleted,

-- > IDLE state.

RESYNC state:

Data Record: Free buffer.
Normal EOF: Free buffer.
Delete Transfer: Send Transfer Deleted.
Transfer Deleted: --) IDLE state.

IDLE state:

The channel is now free on both systems.

2.3.7. FTS MESSAGES

All file transfers are done with FTS IP messages, as
follows:

2.3.7.1. START SEND FILE

FTS Start Send File initiates an IP SEND operation,
specifying a file name and format mode. Normal
response is the assignment of a transfer channel within
MP. The referenced file name must exist, and have an
assigned LRSC, RPB, and an allocation appropriate to
the number of records in the new file. Any old file
contents associated with the name are deleted. The
formats of this message and its replies are:

Start Send File = FTS(0.,S1,<xfr spec>)

Ok to Send = FTS(<xfr no>,00,<xfr spec>)
No Free Channel = FTS(0,81,<xfr spec>)
File not Found = FTS(0,82,<xfr spec>)

I.i
• .. '.-

1

AN IP SERVER FOR NS4
April 1, 1976 -- CCN/TR7

PAGE 23

2.3.7.2. SEND RECORD

FTS Send Record sends the next record of the specified
file transfer. Normally it expects no response.
However, MP is permitted to respond with Delete
Transfer. The formats are:

Send Record = FTS(<xfr no>,00,<record>)

Delete Transfer = FTS(<xfr no>,04,)

2.3.7.3. NORMAL EOF

WMO sends FTS Normal EOF instead of a data record to
finalize a file transfer operation normally. MP
responds with either Transfer Complete or Delete
Transfer. The formats are:

Normal EOF = FTS(<xfr no>,03,)

Transfer Complete = FTS(<xfr no>,05,)
Delete Transfer = FTS(<xfr no>,04,)

2.3.7.4. DELETE TRANSFER

WMO sends FTS Delete Transfer instead of a data record
to abort a file transfer operation due to an error
condition within WMO. MP responds with Transfer
Deleted. The formats are:

Delete Transfer = FTS(<xfr no>,04,)

Transfer Deleted = FTS(<xfr no>,06,)

2.3.7.5. TRANSFER DELETED

W'MO sends FTS Transfer Deleted as its last comment on
an aborted transfer operation. MP does not respo~nd in
this case. The format is:

Transfer Deleted = FTS(<xfr no>,06,)

2.3.7.6. START GET FILE

FTS Start Get File initiates an IP GET operation,
specifying a file name, which must exist, and a format
mode. The formats of this message and its initial
replies are:

Start Get File = FTS(0,02,<xfr spec>)

Ok to Get = FTS(<xfr no>,00,<xfr spec>)
No Free Channel = FTS(0,81,<xfr spec>)
File not Found = FTS(0,82,<xfr spec>)

- ~ ~ - ~ ..

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 24

Following an OK to Get response, several (one for each
record in the file) data transfer responses are made by
MP:

Gotten Record = FTS(<xfr no>,00,<record>)

MP finally terminates the transfer by one of:

Normal EOF = FTS(0,01,<xfr spec>)

Delete Transfer = FTS(0,04,<xfr spec>)

If MP received Delete Transfer it responds with
Transfer Deleted:

Transfer Deleted = FTS(<xfr no>,06,)

. S.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 25

2.4. THE WORK ORDER EXECUTIVE SUBSYSTEM

Batch job execution under IP takes place in four stages:

1) Transmitting any input and command files not already
at the batch TBH.

2) Submitting the command file to the TBH's local
operating system for execution.

3) Retrieving result file(s).

4) Deleting the job from the TBH system.

Stages 1) and 3) are accomplished through CAT and FTS;
stages 2) and 4) are performed via WOE (Work Order
Executive).

2.4.1. SUBMIT JOB

WOE Submit Job names a card-image file which is to be
turned over to the local operating system as the
definition of a local batch job. The formats of this
message and its responses are:

Submit Job = WOE(l,00,<job spec>)

Submit Successful = WOE(l,00,<job id>)
File Not Found = WOE(l,82,<job spec>)
Job Refused by TBH = WOE(l,88,<job spec>)

2.4.2. QUERY JOB STATUS

WOE Query Job Status is used to learn the current status
of a job previously entered into the local system via WOE
Submit Job. Before responding with its true reply, if
the job status is found to be "done," this message will
trigger retransmission of the unsolicited WOE Job Done
message. The format of this message and its reply is:

Query Job Status = WOE(3,00,(WMO job no>)

Status Reply = WOE(3,<job status>,<job msg>)

Here (job msg> is a string suitable for human
~interpretation, and <job status> is one of the following:

! 00 -Job not found
01 -Job running
02 -Job in output queue
03 - Job in input queue

04 - Job waiting for readerI

. $

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 26

2.4.3. JOB DONE

WOE Job Done is not a WMO message; it is rather an
unsolicited message passed to WMO by MP, containing a
job's time and charges. Because this is the only
mechanism defined to relay charging information to WMO,
and because WMO does not respond to the message in any

way, careful measures have to be taken to ensure that the

message is not lost. MP will transmit the message on the
following occasions:

* When the local system signals MP that the job's status

has just been changed to "done".

* Whenever WMO sends a WOE Query Job Status for a job,

I and the Job Done message has already been sent for that
~job. In this case, HP will retransmit the message
i BEFORE responding with Status Reply.

* Immediately after sending the response to a SYS Reset
message (see below).

The format of this message is:

JOb Done = WOE*(4,0 ,<joo summary>)

2.4.4. DELETE JOB

WOE Delete Job causes the indicated job to be deleted
from any tables kept by HP or the local Operating System.
The job's status must be 'done". The format of this
message and its replies is:

Delete Job = WOE(5,00,<WMO job no>)

Job Deleted = WOE(5,06,<WMO job no>)

Not Done = WOE(5,00,<WMO job no>)

AN IP SERVER FOR NSWApril 1, 1976 -- CCN/TR7

PAGE 27

2.5. THE SYSTEM MESSAGE SUBSYSTEM

System messages are defined for the purpose of exchanging
system status information. They contain no information
relating to any particular file or any particular job. The
following are currently defined:

2.5.1. ECHO

SYS Echo requests MP to respond by simply returning the
request to WMO unaltered. No side effects are produced
by this message. Its format is:

Echo = SYS(0,00,<msg>)

2.5.2. INVALID MESSAGE

SYS Invalid Message is sent by either system, when a
messaqe has arrived at that system garbled. Further
processing is not clearly defined. The format is:

Invalid Message = SYS(l,00,<msg>)

2.5.3. TERMINATION REQUESTS

MP can signal WMO that it wishes to terminate service by
either of two unsolicited messages. SYS Service
Termination means that MP intends to terminate
gracefully, and the WMO should stop initiating file
transfers; as soon as MP? is idle, it will terminate
itself. SYS Server Crash means that MP? is terminating
less than gracefully, and cannot wait to finish file
transfers currently in progress. In either case, WMO
must poll MP periodically until service is resumed. At
that time, a restart sequence must be initiated; however,
this is currently undefined. The formats of these
messages are:

Server Crash = SYS*(2,00,)
Service Termination = SYS*(3,00,)

- ; , , IFA

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 28

2.5.4. RESET

SYS Reset is sent to MP by WMO to return MP to an idle
state. MP simulates FTS Delete Transfer on all active
file transfers, and discards any messages waiting to be
processed. The RESET message is echoed to signal WlMO
that the two systems are again synchronized. After this
echo, unsolicited WOE Job Done messages will be
retransmitted for any jobs whose status is "done". The
format of both the message and response is:

Reset - SYS(4,00,)

>...-,.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 29

3. IMPLEMENTATION OF THE CCN IP SERVER

3.1. GENERAL STRATEGY

There were several possible strategies for an IP Server
implementation at CCN. The IP Server could, like the CCN
FTP Server, execute directly within the NCP. However, this
would have required extensions to the operating system
interface of the NCP, and would have adversely impacted the
stability of the NCP during debugging of IP.

Other considerations in choosing a strategy were the desire
for rapid implementation of this interim facility, and the
certainty that the IP protocol would evolve during and
after the original implementation. Therefore, it was
desirable to write the Server in a higher-level language,
which meant a penalty in core memory requirements.

A second possibility was to run the IP Server as a batch
job (or equivalently, an OS/360 system task). This had the
drawbacks that (1) the unmodified batch environment of
OS/360 does not have all the required file system hooks,
and (2) there would either be core storage and a protection
key tied up at all times, or else there might be an
appreciable delay (minutes) in getting a main storage
region to start IP whenever WMO called.
Based upon these considerations, the following strategy was

actually adopted for the IP Server implementation:

* MP is written largely as a PL/l program, which calls
assembly - language interface subroutines as necessary.

* MP operates as a command processor under TSO, using
existing TSO commands as much as possible for
manipulating the OS file system. Under TSO, MP is
swapped out of core whenever it is idle.

* For debugging, MP can be executed from a user terminal
and the services of TSO TEST are available. However, the
production MP program is executed by a "pseudo-user".
That is, an ever-present system process connects to TCAM
(the terminal driver of TSO) a3 a virtual terminal, using
Exchange, and sends a sequence of TSO commands to LOGON
and execute MP.

* To perform Network I/O, MP opens a direct Exchange window
to a process in the NCP called IPTASK. IPTASK manages
the ARPANET connections to the WMO, and passes buffers
back and forth between the 4etwork and the Exchange
window to MP. See Figure 3. IPTASK was also chosen to
LOGON to TSO as the pseudo-user, since IPTASK must be up

• ° , ,, ;4.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 30

whenever the IP Server is running.

3.2. SYSTEM INTERFACES

MP in turn required suitable interfaces into the CCN batch
system. Specifically, the following interfaces were
required (for more detail see Appendix C):

1) Job SUBMIT Interface

MP required a system call with the following
parameters:

SUBMIT(<job ddname>, <charge number>, <password>,

<jobname>,<output pathname>).

Here:

* <job ddname> is a handle on the file containing the

job stream to be submitted;

* <charge number> is the account to which job execution

is to be charged (we believe that the IP Server, not
the WMO, should determine the account number for
running NSW batch jobs);

* <password> is the batch password for <charge number>

(which is therefore not required to be transmitted

across the Network or known to WMO);

* <jobname> is the (unique) 8-character name to be

assigned to the job;

* <output queue> is the designation of the OS/360

output queue to which NSW jobs are to be delivered;

* <output pathname> is a string which is passed through

the job submission and job execution mechanism to the
system process "SPOOL3", whose function is explained
below.

The existing TSO SUBMIT command lack4ed many of these

parameters, so a new system-wide submit interface was
needed. An SVC was written which verifies the
uniqueness of the <jobname>, saves some of the
parameters in the CCN job table (rMT and TMD), and
enqueues the submit request for the IBM
Reader/Interpreter process called BRDR; see Ref. 7.

2) Output SPOOLing Process (SPOOL3)

"" -.... mu-' i *r"i .. " ": l " "" ' , ' - -,,': ,

I AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 31

In the CCN batch system, a single system process named
"SPOOL3" is used to return the output of batch jobs to
on-line systems -- URSA, TSO, and now MP. "SPOOL3"
transcribes and rectifies the primary "printer" output
stream (or "SYSOUT" in IBM parlance) from a batch job,
creating a single data set on disk. It then signals
the appropriate on-line system that the job output is
available. To incorporate NSW jobs, SPOOL3 was changed
to dequeue batch jobs from a new OS/360 queue ("W"),
and to notify MP via the CCN system-wide message
queueing facility called GMF (Generalized Message
Facility). SPOOL3 was also changed to interpret the
<output pathname> passed from the submit SVC; this
string includes: (1) the GMF queue name to be used to
notify MP of job completion; (2) the data set name to
be assigned to the output file, and (3) the disk volume
on which the output file is to be written.

3) Job Status SVC

In order to service WOE Query Job Status messages, a
STATUS SVC was written, with a call of the form:

STATUS(<jobname> -> <status string>)

Included in <status string> are the input/output queue
position if the job is awaiting execution or SPOOL3, or
the stepname, accounting measures, and charges if the
job is currently in execution. This string is returned
to the WMO in WOE Status Reply messages.

4) Exchange Interface

An assembly-language interface to the Exchange
interprocess communication SVC's was required (Ref. 8).

5) GMF Interface

Finally, an assembly - language interface to GMF was
written. This interface includes a software interrupt
thru which SPOOL3 signals MP of batch output
availability. It also allows MP to read the accounting
parameters (time and charges) and output pathname from
the message placed in GMF by SPOOL3 (Ref. 9).

...

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 32

3.3. NCP INTERFACE PROCESS IPTASK

The process in the CCN NCP which interfaces between MP and

the ARPANET is called IPTASK. It is expected that there
will be more than one host running a WM and WMO, although
at most one WMO is to be allowed per host. At present,
there is a test version of the WM/WMO on the Tenex host

BBNB, and a production version at host ISIC. Each WMO
incorporates an IP User process, and there must be a
corresponding process pair (IPTASK,MP) at CCN for each.
Since the WMO does not do an honest Initial Connection
Protocol sequence to open the Network connections, each
IPTASK must know what host and socket-pair to use. The set
of hosts running WM's is expected to be administratively
determined and not rapidly changing, so that a table within
the CCN NCP is used to determine the selection.

The CCN NCP appears to the operating system as a single
task, but internally it uses a commutator to perform
multiprogramming (as does MP; see the following section).

We say that internally the NCP creates a set of
"pseudo-tasks". The IPTASK logical processes are composed

of a set of pseudo-tasks named IPTASKA, IPTASKB, and
IPTASKC.

There is exactly one IPTASKA active in the NCP at all
times. IPTASKA is the master controller , using a table to
create an (IPTASKB, IPTASKC) pair for each IPTASK process,
i.e. for each IP User host which CCN is to service.
IPTASKA is created at the level of a host-control
pseudo-task when the NCP is started. It waits one minute
and then creates ("p-attaches") an IPTASKB pseudo-task for
each host in its table.

An IPTASKB operates in the following manner:

* IPTASKB opens an Exchange window to TCAM to create a
virtual TSO terminal. It then sends a TSO LOGON command
over this connection, using a userid and charge number
passed by IPTASKA from its table.

* When the virtual keyboard unlocks, indicating that LOGON
is complete, IPTASKB issues the TSO command *NSWMP",
which calls a command procedure to invoke MP as a
processor.

* IPTASKB then creates its partner IPTASKC as a

sub-pseudo-task.

* If the virtual keyboard ever unlocks again, indicating
that MP has terminated and the TSO executive (TMP) is
requesting a new command, IPTASKB repeats the two
preceding steps (the previous IPTASKC will have
terminated itself already; see below). However, IPTASKB

i 9.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 33

will repeat the sequence only a limited number of times:
if MP terminates five times in a row, IPTASKB closes the
virtual terminal window, ending the TSO session, and
waits one minute before starting its sequence over from
the beginning. This delay protects against excessive
system utilization caused by a failing MP.

IPTASKC does the actual data transfer. It operates in the

following manner:

* IPTASKC issues a Listen for the Network sockets (S+2,S+3)

and a host whose number was passed from the table.
Currently S is 256.

* IPTASKC issues an Exchange Open request to open an
Exchange path directly to MP. Specifically, he executes:

EXOPEN MYTAG=IPTASK2,MYJOB=ARPA,
YOURTAG=<TSO userid>,YOURJOB=*,CHANLIM=2

* When this Exchange window opens, IPTASKC waits (if

necessary) for RFC's from the remote IP User. When the
RFC's arrive, IPTASKC sends matching RFC's to fully open
the Network connection.

* IPTASKC now enters a data transfer loop, waiting for

output from MP on Channel 1 of the Exchange window, or
input for MP on socket S+2. It simply retransmits such
data to socket S+3 or to Exchange channel 0,
respectively.

* If one or more of the two Network connections and the
Exchange window closes or has an error, IPTASKC simply
terminates. This causes all open Network connections and
the Exchange window to be closed by the NCP. The
termination of MP in turn awakens IPTASKB, which then
repeats the cycle.

aki

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 34

3.4. CCN MESSAGE PROCESSOR MP

Although MP operates as a single task (i.e. process or
fork) under OS/360, it is organized to support multiple
concurrent IP operations. This internal multiprogramming
of MP is achieved by means of a variant of the standard
"commutator" or "coroutine" organization. That is, MP
contains a set of asynchronous functions, each having its
own locus of control and operating uninterruptibly with
respect to the others. A particular MP function
relinquishes control to another function only voluntarily,
"blocking" itself until some event occurs.

Multiprogramming within MP is controlled by a program
called PROCESS DIRECTOR. An MP function blocks by
returning control to PROCESS DIRECTOR, which tnen scans its
list of functions and enters the next next one which is
unblocked. Since PROCESS DIRECTOR scans the function list
in a circular manner, this list is often called a
"commutator", and the entry corresponding to a particular
function (coroutine) is called a "slot". In the following,
we will use the terms "asynchronous function", "function",
and "slot" interchangeably.

The MP design differs from the normal commutator
organization in that PROCESS DIRECTOR does not save the
location counter of a function When it blocks. Instead,
each function must save its internal state (normally as an
integer-valued switch) before blocking, and branch on this
state switch when PROCESS DIRECTOR reenters the function
(always at its initial entry-point). This design approach
allows the support of PL/I routines u.&der the commutator.

Synchronization of MP functions is achieved with standard
OS/360 binary-semaphore-like objects called Event Control
Blocks or ECB's. An ECB is a fullword in the user address
space. Before relinquishing control to PROCESS DIRECTOR,
an MP function must store into its commutator slot the
handle for an ECB. The function will become unblocked when
this semaphore is signalled or "posted" by some other
function (e.g. when a buffer has been placed on an input
queue for the blocked function) or by an external event
(e.g. an Exchange operation from IPTASK has completed). MP
does not distinguish internal from external events. If it
finds that all functions on the commutator are blocked,
PROCESS DIRECTOR issues a real OS/360 WAIT SVC for the
entire list of ECB's, one per slot. This WAIT operation is
issued via the PL/I-to-Exchange interface subroutine EXWAIT
(Ref. 8).

The functions of MP generally communicate with each other
by moving data buffers among internal queues. There are
common (synchronous) subroutines for manipulating these
queues. In most cases, functions are blocked waiting for a

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 35

buffer to be placed in their input queue. The particular
advantage of the coroutine organization is that, since the

functions are uninterruptible, they can manipulate the
queues without requiring mutual exclusion.

In summary, the major components of MP are:

* The Main Control module, which includes

PROCESSDIRECTOR;

* A number of "asynchronous functions", operating

independently under control of PROCESSDIRECTOR; and

* A variety of synchronous service routines callable by

any of the asynchronous functions.

A general description of these components follows. For more
details, see Appendix C.

3.4.1. THE COMMUTATOR

The Main Control module consists of the program 'MAINPGM'

and its subroutine 'PROCESS DIRECTOR'. When it is first
entered, 14AINPGM calls various initialization service
routines and then calls PROCEfr DIRECTOR. The latter
exits only when MP is terminating, 1-1 which case MAINPGM
calls various cleanup service routines and itself exits
to the TSO TMP (executive).

PROCESS DIRECTOR supervises the execution of the
asynchronous functions of MP, using a set of parallel
vectors defining the commutator. A cross-section of these
vectors forms a single slot of the commutator. These
vectors are:

* ENTRYPTS -- a vector of ENTRY variables giving the
initial entry points of the corresponding asynchronous
function modules;

* RESETPTS -- a vector of entry variables giving the

entry points for executing a RESET. When a module is
entered at its RESET entry, it must terminate any
operation in progress quickly but cleanly.

* ECBADS -- a vector of POINTERs to the current handles
for the ECB's for which the functions are blocked. The
format of these handles is defined by the parameter
format of the EXWAIT interface subroutine.

* RETCODES -- a vector of fullwords to receive the EXWAIT

return codes corresponding to ECBADS.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 36

* SLOT STATES -- a vector of halfwords in which the

asynchronous functions maintain their current state
codes. Main Control clears this vector to zero as a
signal to each asynchronous function to perform local
initialization, but does not reference it thereafter.

3.4.2. THE ASYNCHRONOUS FUNCTIONS

Asynchronous functions synchronize themselves via the
vectors ECBADS and SLOTSTATES, using the following
conventions:

* The function is written to wait on a single event at a

time;

* The function keeps all state information that must be

retained across a wait in safe data areas. All CSECTs
of the function's code must be synchronously
refreshable, i.e. must be overlayable at the time that
control is returned to PROCESSDIRECTOR.

* The function implements a wait (blocks itself) with the

following sequence:

1) Store a handle for the appropriate ECB into its

slot in ECBADS; (If the event is the completion of a
pending Exchange open or EXCHange request, then the
PLOXI routine (Ref. 8) which initiated the request
returned a handle for the completion event. For a
non-Exchange event, the program should provide an
aligned fullword as an ECB; the handle is the 2's
complement of the address (POINTER) for this word.)

2) Store the value 'Pending' into its slot of
RETCODES;

3) Store its state value into its slot of

SLOTSTATES;

4) Execute a RETURN v

5) Upon being re-entered by PROCESS DIRECTOR, test
the state code and reposition the location counter
(i.e. branch) to the point where execution should
resume.

* The function should make reasonable efforts not to

cause real waits in any other way.

Each function may consider itself to be operating
non-interruptibly with respect to the other functions of
MP, except when it issues a RETURN as described above.
For this reason, a routine which is executed by more than
one function (slot) need not be fully reentrant.

AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7
PAGE 37

The functions defined in MP are as follows:

* (five slots) FTS -- the File Transfer Service's five

asynchronous data transfer functions.

These functions all share the single routine FTS,
which is capable of executing both IP SEND and IP GET
operations.

* EXOUT -- the output Exchange handler.

This function manages buffers queued for transmission
over the outgoing channel of the Exchange window to
the NCP and thence over the Network to the user
process.

" EXIN -- the input Exchange handler.

This function decodes the header of each incoming IP
message and moves the buffer containing the message
into the input queue for the appropriate function --
FTS, GENERAL, or STATUS.

* GENERAL -- the general IP Message processor.

This function processes all incoming IP messages
except those handled by FTS or STATUS. Thus, it
processes the following IP messages:

CAT Read File Name (read attributes of existing
data set)

CAT Enter File Name ("Allocate" a new data set)

CAT Purge File (delete a file)

CAT Rename File

WOE Submit Job

FTS Start Send File (initiate FTS SEND operation)

FTS Start Get File (initiate FTS GET operation)

* STATUS -- processes Status Query and Job Delete

messages.

This function sends WOE Status Reply messages in
response to WOE Query Job Status, processes WOE
Delete Job, and retransmits the asynchronous Job Done
messages for any jobs awaiting retrieval at the time
of a SYS Reset operation. This function is separate
from 'GENERAL' primarily because Query Job Status can
sometimes return two response messages for one input

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 38

message. This behavior does not fit well with
GENERAL's design, which assumes one reply for each
message. WOE Delete Job is included here because it
shares some common logic with WOE Query Job Status.

* NOTIFY -- job completion notification.

This function listens for notification from the CCN
batch system that an NSW batch job is complete and
its output is available for retrieval. NOTIFY passes
this signal back to the WMO asynchronously, and then
turns the job over to STATUS.

* OPR -- user interface to CCN operator.

This function is currently null.

3.4.3. THE SYNCHRONOUS SERVICE ROUTINES

Synchronous service routines can be called from any
asynchronous function without that function's being
blocked. Some important synchronous service routines are:

* ENQ" and "NDEQ" manage the buffer queues which are

used to pass data between functions.

ENQ accepts the address of a queue anchor and the
address of a buffer, and hangs the buffer onto the
queue. If any function was waiting for that queue, his
ECB is posted.

NDEQ attempts to obtain a buffer from a queue. If none
is available, NDEQ executes part of the wait sequence
(setting ECBADS and RETCODES), allowing the calling
function to simply store his state value and RETURN to
the PROCESS DIRECTOR to wait for an available buffer.
Parameters to NDEQ are the queue anchor address and the
address of a 'WAITER' block. A WAITER block in turn
contains the resulting buffer address (if the dequeue
was successful), and the caller's slot number. NDEQ
also returns a 1-bit flag which is false if dequeue was
successful and true otherwise.

* JOURNAL" creates a history log of MP activity,
periodically spinning it off to a printer. JOURNAL
accepts a character string and a message type code.
JOURNAL contains logic to suppress output of certain
message types based upon parameters for the run, so he
can be called liberally, for every message that might
ever be wanted.

* COKMAND" accepts a TSO command string and a vector of
known error codes that could result. The command is
executed, the results analyzed, and a code returned
indicating one of the states described in the vector

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 39

'BASIC SITUATIONS'.

Other synchronous service routines provide irterfaces to
the system calls for Exchange, for the Generalized
Message Facility (GMF), and to the Job Submit function of
the CCN routing SVC. See Appendix C for details.

t

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 40

4. CONCLUSIONS

The ultimate NSW plan is for every TBH to include a complex
file transfer module called a "File Package" (see Ref. 3).
The File Package, which will be capable of performing complex
resource-allocation and conversion actions as well as simple
data movement, will be used in place of all the file transfer
primitives of IP (CAT and FTS). The File Package protocol in
turn will be built upon a new interprocess - communication
protocol called KSG. MSG will also be used by the WMO to
request the job submit/delete/status functions of WOE. These
latter will be implemented by a program running in an NSW
environment established by the Foreman.

Designing and building MSG, the Foreman, and the File Package
will be major software efforts. While these efforts are in

progress, the interim IP server described in this report will
allow the productive use of the CCN 360/91 as a batch TBH
under NSW.

This document has described the CCN IP server as of April 1,

1976. It is recognized that this implementation is
incomplete, and some further evolution is to be expected
before the interim protocol IP is actually replaced by the
next generation of NSW protocols.

4.1. EXTENSIONS

There are a number of capabilities which will be needed
that are not now included in the present IP Server at CCN.

4.1.1. OPERATOR INTERFACE

The OPR function of MP is currently implemented as a null
program. This means that the SYS messages Service
Termination and Server Crash are not sent. This function
should be implemented, and given a communcations channel
to the CCN system operator. It may be that additional
functions would be helpful here.

4.1.2. USER CONVENIENCES

It is felt that the CCN system could provide some helpful
information to the NSW user, using WMO-controlled inquiry
facilities. For example, during the early days of NSW it
will be helpful for a user to be able to inquire about
the current availability schedule for a particular tool.

4.1.3. MONITORING

Initial experience with the IP system indicates that
further development will be expedited by some improved
tools for monitoring the activities of the server
programs. Because their TSO terminals are effectively

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 41

managed by a systems program, the usual user windows to
the outside world are not available.

4.1.4. JOB CANCEL CAPABILITY

The present definition of IP does not include any
mechanism for cancelling a job submitted by WOE. We feel
that this capability will eventually be needed.

4.2. PERFORMANCE IMPROVEMENTS

No comprehesive data have been gathered on the performance
of the current IP server; however, casual observation
indicates that single FTS transfers operate at between 1B00
and 2000 baud. We do not consider this acceptable. Only
further study will locate all areas requiring improvement,
but some things are known to need work.

4.2.1. TEXT COMPRESSION

It has already been agreed with MCA that IP will be
extended to include compressed data transmission before
July 1, 1976. The technique used will be that already
defined for future implementation in the NSW File Package
(see Ref. 3). The FTS file type concept will be extended
to include compressed-A, compressed-F, and compressed-B.

4.2.2. MESSAGE BLOCKING

The current IP server will be changed to pack and unpack
IP messages explicitly, instead of using the implicit
packing of the CCN Exchange service. This is expected to
result in a lower swap rate for the TSO task that
implements the server, by keeping control within that
task for longer periods of time.

4.3. RELIABILITY IMPROVEMENTS

It has been noted that CCN intends to sophisticate the
mechanisms used to keep the "job tables" at CCN and at WMO
synchronized. This will be done by removing the the
explicit relationship between WMO job number and CCN job
name. IP will then have no serious problems recovering
from a cold start on either end of the Network connections.
A double cold start will still not be handled.

5. ACKNOWLEDGMENTS

The implementation of an IP Server at CCN was enormously
aided by the constant cooperation of Charlie Muntz and his

* coworkers at Massachusetts Computer Associates, Inc. We
appreciate Muntz's allowing us to freely plagiarize his IP
documentation in order to prepare Section 2 and Appendix A of
this document.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 42

6. REFERENCES

1) -BASIC.ORIENTATION". CCN Document B001. Campus Computing
Network, UCLA, Oct 31, 1975.

2) "Overview of NSW Batch", C. MUNTZ, Unpublished working
document, MCA, Wakefield, Mass., 1975.

3) "File Package: The File Handling Facility for the NSW",
Charles Muntz. Massachusetts Computer Associates, Inc.,
document CADD-7602-2011. MCA, Wakefield, Mass., Mar.
1976.

Also, "MSG Design Specifications". Chapter 3 in op.cit.

4) "Tenex IP Design", C. Muntz. Unpublished working paper.
MCA, Wakefield, Mass., 1975.

5) "CCN ARPA Interface Software Program Logic Manual". CCN
systems document Q43. Campus Computing Network, UCLA,
Sept 1972.

6) "Programmer's Guide to the Exchange", R. T. Braden and
S. Feigin. CCN Technical Report TR5. Campus Computing
Network, UCLA, Mar 1972.

7) "Using the System Routing SVC to Submit Jobs", L. Rivas.
CCN systems document S-179, Campus Computing Network,
UCLA, Feb. 6, 1976.

8) "A PLI (Optimizer) Interface to Exchange", R. T. Braden.
CCN systems document S-191. Campus Computing Network,
UCLA, Feb. 20, 1976.

9) OPLGMF -- PLIX Interface to GMF", R. T. Braden. CCN
systems document S-182, Campus Computing Network, UCLA,
Oct 29, 1975.

Also, "Programming Using the Generalized Message
Facility", D. Worth. CCN systems document S-180. Campus
Computing Network, UCLA, Aug 25, 1975.

10) mThe Guardian and Service SVC's". CCN systems document
S-136. Campus Computing Network, UCLA, Feb 6, 1976
(latest revision).

11) "BASIC.RATES". CCN Document B002. Campus Computing
Network, UCLA, Nov. 5, 1975.

12) "Tenex IP Handling of FTS Errors", P. Cashman.
Unpublished working paper. MCA, Wakefield, Mass., 1975.

I
AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7
PAGE 43

13) "The CCNDEVTP Macro", H. Ludlam. CCN systems document
S-169, Campus Computing Network, UCLA, Jan. 30, 1975.

14) "The TMPMAC Service", P. Neilsen. CCN systems document
S-176, Campus Computing Network, UCLA, May 12, 1975.

15) "SUPP.FORTRAN.SUBROUTINES". CCN Document S006. Campus
Computing Network, UCLA, in revision at this writing.

16) =SUPP.TSO.PLI ROUTINES". CCN Document S092. Campus
Computing Network, UCLA, in revision at this writing.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 44

7. APPENDIX A -- IP MESSAGE SUMMARY

The following list is organized into groups that correspond
roughly to WMO messages. Each such group is headed by the
WMO message, which is further designated by an asterisk (*)
following its message name. This message is followed by the
possible MP replies. This convention breaks down for the FTS
messages, and where unsolicited messages are listed. In such
cases, refer to the section "NETWORK IP PROTOCOL DEFINITION"
for more complete explanations. This list is basically a
condensation of that section. However, the BNF definitions
listed here are definitive, and are referenced by the text
section.

7.1. FTS MESSAGES

Start Send File * = FTS(0,01,<xfr spec>)
Ok to Send = FTS(<xfr no>,00,<xfr spec>)
No Free Channel = FTS(0,81,<xfr spec>)
File not Found = FTS(0,82,<xfr spec>)

Send Record * = FTS(<xfr no>,00,<record>)
Delete Transfer = FTS(<xfr no>,04,)

Normal EOF * = FTS(<xfr no>,03,)
Transfer Complete = FTS(<xfr no>,05,)
Delete Transfer = FTS(<xfr no>,04,)

Delete Transfer * = FTS(<xfr no>,04,)
Transfer Deleted = FTS(<xfr no>,06,)

Transfer Deleted * = FTS(<xfr no>,06,)

Start Get File * = FTS(0,02,<xfr spec>)
Ok to Get = FTS(<xfr no>,00,<xfr spec>)
No Free Channel = FTS(0,81,<xfr spec>)
File not Found = FTS(0,82,<xfr spec>)
Gotten Record = FTS(<xfr no>,00,<record>)
Normal EOF = FTS(0,01,<xfr spec>)
Delete Transfer = FTS(0,04,<xfr spec>)

.w

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 45

7.2. CAT MESSAGES

Read File Name * =CAT(0,00,(file name>)
File Present =CAT(0,00,(file spec>)
MP 1/0 Error =CAT(0,88,<file name>)

Enter File Name * =CAT(l,00,(partial file spec>)
File Entered -CAT(l,00,(qualified file name>)
No space -CAT(l,84,(partial file spec>)
Duplicate Name -CAT(l,86,<partial file spec>)
MP 1/0 Error -CAT(0,88,(partial file spec>)

Purge File *-CAT(2,00,(file name>)
File Purged -CAT(2,00,<file name>)
File Not Found -CAT(2,82,<file name>)
MP 1/0 Error -CAT(2,88,<file name>)

Rename File *=CAT(3,00,(file name pair>)
File Renamed =CAT(3,00,(file name pair>)
File Not Found =CAT(3,82,(file name pair>)
Duplicate Name =CAT(3,86,<file name pair>)
MP 1/0 Error =CAT(3,88,(file name pair>)

AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7

PAGE 46

7.3. WOE MESSAGES

Submit Job *WOE(l,00,<job spec>)
Submit Successful =WOE(l,00,(job id>)
File Not Found = WOE(l,82,<job spec>)
Job Refused by TBH - WOE(1,88,<job spec>)

Query Job Status *= WOE(3,00,(WMO job no>)
Status Reply =WOF(3,(job status>,<job msg>)

Job Done = WOE*(4,00,<job summary>)

Delete Job *= WOE(5,00,<WMO job no>)
Job Deleted = WOE(5,06,<WMO job no>)
Not Done = WQE(5,00,<WMO job no>)

7.4. SYS MESSAGES

Echo *-SYS(0,00,<msg>)

Echo -SYS(0,00,(msg>)

Invalid Message * = SYS(l,00,<msg>)
Invalid message = SYS(l,00,<Msg>)

Service Termination = SYS*(3,00,)
Server Crash = SYS*(2,00,)

Reset = SYS(4,00,)
Reset = SYS(4,00,)

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 47

7.5. BNF DEFINITIONS

(file name> (simple file name>
I<qualified file name>

(simple file name> (1)
::= (dsname>

(qualified file name> (2)
:: '(dsname>'

(dsname> :=<label>I (label>.(dsriame>
(label> (3) :=<upper letter>j~label><upper letter>

(partial file name> I<ae>dgt
< partial simple file name>
l<partial qualified file name>

(partial simple file name> (1)
(: partial dsname>

(partial qualified file name> (2)
:: '(partial dsname>'

<partial dsname>
< partial label>
I~partial label>.<partial dsname>

(partial label> (3)
< upper letter>
I~partial label>(upper letter>
I<partial label>(digit>
l<partial label><wild character>

<alphanumeric> <letter>l~digit>
(digit> :0111 ... 1819
<letter> :=<upper letter>l~lower letter>
<upper letter> ::AIBI...AYIZI#1@1$
(lower letter> :=albl ... Iyjz
<number> := digit>1< number><digit>
(wild character>

*=question mark
(file name pair>::= (file name>;(file name>
<file spec> :=<file name>;<file map>
(partial file spec>

- (partial file name>;(file map>
<file map> :=<lrsc>,(rpb>,<nrecs>
<' rsc>(4) (number>
<rpb>(4) :=<number>
<nrecs>(4) (number>
<xfr no> :112131415
<xfr spec> <: file name>/<fmt spec>
<fmt spec> :=AIFIB
<record>(5) :=<char record>l<byte record>
<char record> <: IP char>I<char record><IP char>
(byte record> <: byte>I<byte record>(byte>
<byte> ::nany 8-bit code
<1P char>(6) :: alphanumeric>l<blank>I~punctuator>
<blank> ::a blank
<punctuator> : I&I'(I *+II./I$I

exclamation poinEiquestion mark

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 48

IverticallgraveI Icircumfiex

<job spec> <: file name>/(vWMO job no>H
(job id> (label>
<job status> ::00101102103104105
<job summary> :=<WMO job no>;(cpu time>,(charges>
(Cpu time>(7) <: number>
(charges>(8) <: number>
(Wf40 job no>(9) <number>
< ob msg> : <job id>:<msg>
<msg> (ip char>I~msg>(ip char>

Notes:

* 1) Length limited to 33 characters.

* 2) Length limited to 44 characters.

* 3) Length limited to 8 characters.

* 4) Limit implementation dependent.

* 5) Length recorded in header.

* 6) All characters with ASCII codes (octal) 040 -176.

* 7) Units implementation dependent.

*8) In cents.

*9) 1 -256.

'I AN 1P SERVER FOR NSWI
April 1, 1976 -- CCN/TR7

PAGE 49

8. APPENDIX B -- CCN IMPLEMENTATION DEPENDENCIES

CCN's IBM OS/MVT implementation of Network IP has certain

restrictions and extensions.

8.1. DEFERRED MESSAGES

SYS Service Termination and SYS Server Crash are never
sent. They will be implemented in a later version.

8.2. INVALID MESSAGES

When SYS Invalid Message is passed from MP to WMO, it will
contain the handle from the bad message, and carry the
entire bad message, including the bad header, in its
variable data field. At this writing, however, it is not
well defined which fields of the bad message have been
translated from ASCII to EBCDIC, so WMO should probably not
process anything but the handle.

If the message is received by MP, it will be treated as if
it is itself an invalid message.

8.3. TIME REPORTING

In the unsolicited Job Done message, "cpu time" is in CCN
Machine Unit Seconds (MUS). For more information on this
measuring unit, see Ref. 11.

8.4. STANDARD SYSTEM OUTPUT

IP does not explicitly define the Standard System Output
file to be used when a job is submitted. Each Batch TBH
makes this definition. At UCLA it is written to a data set
named

OUTPTT.<job id>

where "<job id>" is returned to WMO in the WOE Submit
Successful response. In our implementation it is the
8-character MVT job name assigned by MP. This data set is
allocated implicitly by CCN's output spooling system, so
WMO must not allocate it. Likewise, it is purged
implicitly by WOE Delete Job, although if WMO chooses to
request an explicit purge prior to deleting the job, no one
will object.

8.5. DUPLICATE JOB NUMBERS

IP does not yet treat the problems of resynchronization of
the two systems in all error cases. CCN is in the process
of developing schemes for handling some cases. However, in
the meantime, if WMO attempts to submit a job with a WMO
job number which is already present in CCN's system:

. .v. -

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 50

* If the old job's status is "done," MP will simulate WOE

Delete Job and will then attempt to submit the new job.

* If the old job's status is not "done", MP will respond
with "Job Refused by TBH". However, it will issue an MVT
CANCEL command against the old job, under the assumption
that it is illegitimate. This will not necessarily
prevent an unsolicited Job-Done message from being sent,
at some future time, for the old job.

8.6. RESET EXTENSION

For our convenience in debugging, we allow a SYS Reset
message to carry a non-null text field, although the
corresponding response will not. If the incoming text is
the string 'END', MP will reset and terminate normally,
without response.

8.7. JOB STATUS MESSAGES

The "<job msg>" component of the Status Response message
will be more structured than is required by IP. The
formats are as follows:

* JOB NOT FOUND (modifier = 05):

The message is of the form:

jobname: NOT FOUND

* JOB WAITING FOR READER (modifier = 04):

The message is of the form:

jobname: READING

* JOB IN INPUT QUEUE (modifier = 03):

The message is of the form:

jobname: INP c nnnxx OF mmm JOBS zzzzzz

Where:

"c" is the MVT input queue identifier, A-O. Normally,
the lower-valued queues (A, B) contain express jobs and
move quickly, while higher-valued queues (N, 0) contain
jobs requiring massive system resources, and move very
slowly.

"nnn" is the position of the job in the queue.
Position 1 is next to be executed. I

I
- J

AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7
PAGE 51

"xxx" is an appropriate suffix ("ST," "ND," "RD,"
"TH").

"mmm" is the number of jobs in the queue.

"zzzzzz", is only present if the job has been "held",
in which case it is the literal string "(HELD)". A
held job is one that will be scheduled for execution by
operator command instead of MVT's automatic scheduling
facilities. Setup jobs are an example.

* JOB RUNNING (modifier = 01):

The message is of one of two forms:

jobname: RUN ssss rrrK iiiil ttttS ddd.cc
jobname: RUN In rrrK

Where:

"ssss" is the (possibly truncated) step name of the job
step currently in execution.

"rrr" is the current region (in kilobytes) being used.

"iiii" is the cumulative I/O request count.

"tttt" is the cumulative CPU time used.

"ddd.cc" is the cumulative charges for the job, in

dollars and cents. There is a floating "$" in this
field, and if a WMO program were to wish to extract
charges from this message, it would be well advised to
locate the field by scanning for "$".

"n" is an MVT job initiator id. This form of the
message is returned if the job is currently in
inter-step scheduling. At such a time, the other
values are not available in main storage.

* JOB IN OUTPUT QUEUE (modifier = 02):

The message is of the form:

jobname: OUT c nnnxx OF mmm JOBS zzzzz

Where:

"c" is the MVT output queue identifier, usually "W" for
output to be returned to NSW.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 52

Nnnn" is the position of the job in the queue.

Position 1 is next to be spooled.

"xxx" is an appropriate suffix ("ST," "ND," "RD,"
-THH).

"mmm" is the number of jobs in the queue.

"zzzzzz", is only present if the job has been
cancelled, in which case it is the literal string
"(CANC) ".

* JOB DONE (modifier = 05):

The message is of the form:

jobname: READY FOR RETRIEVAL

8.8. IP FILE ALLOCATION ATTRIBUTES

MP does not keep explicit track of the LRSC, RPB, and NRECS
attributes. CAT Enter File Name converts these into the
similar MVT attributes LRECL, BLKSIZE, and SPACE. CAT Read
File Name does an approximate reconversion; however, WMO
must not expect complete accuracy except in LRSC.

The calculation of NRECS is strictly approximate, and is
based on the OS LRECL, BLKSIZE, and SPACE attributes, as
well as the characteristics of the device on which the file
resides. For complete details, see the documentation of MP
synchronous subroutine LOOKUP in Appendix C.

The limitations on LRSC, RPB, and NRECS imposed by CAT
Enter File Name are actually those imposed by the physical
device on which the data set is allocated, and the amount
of free space currently available there. MP currently
reserves enough primary space for NRECS records as
described by LRSC and RPB, with enough potential growing
room to accomodate approximately three times that many
additional records. However, expansion of any MVT data set
is always contingent on availabilibty of free space on the
original disk volume (CAT does not now support multi-volume
data sets). Currently, NSW data is stored on an IBM 2314
disk volume. This disk has a track length (which limits
LRSC * RPB) of about 7294 bytes. Inter-block gaps, other
than end-of-track, require about 150 bytes each. On such a
disk, the preferred RPB for a card-image data set (LRSC =
80) is 44.

AN IP SERVER FOR NSW

April 1, 1976 -- CCN/TR7
PAGE 53

8.9. FTS RECORD HANDLING

In FTS file transfers, certain potential error situations
have been circumvented by the following conventions:

* A short binary record will be padded out to LRSC bytes

with binary zero bytes.

* Any record of any format that is longer than LRSC will be

truncated to length LRSC without comment.

* Format-F records will be written to disk in the MVT

preferred printer-image record format -- VBA. This means
that deleted trailing blanks are not restored. However,
over-long records are still truncated. If formatted data
must be recorded in record format FB, they may be
transmitted as format-A records. Since MVT does not
record the transmission format, no more information will
be lost. When FTS opens a data set as the recipient of a
Format-F SEND operation, it forces the Record Format of
the data set to VBA. If it was not already that, this
change will imply a change in the value of the virtual
datum NRECS. This value is estimated quite differently
for fixed and variable records.

8.10. FILE NAMES

CAT Enter Name, when it is successful, will always return
the form <qualified file name> (defined in Appendix A).
This is source for the file names which it substitutes into
the Job Control data to be submitted to the BTBH background
system. In MVT, batch job definitions are interpreted
outside the scope of implied qualification by the IP server
ID. In all other cases where WMO sends a file name, it is
for interpretation by MP itself, and WMO need not concern
itself which form of file name it uses.

8.11. PDS MEMBERS

In the CCN implementation, individual members of
Partitioned Data Sets (PDS's) have most of the attributes
of sequential files, and can be manipulated by FTS;
however, PDS's are not supported by CAT, so this feature is
of limited usefulness.

Saim _.

SEEMERN-

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 54

9. APPENDIX C-- MP PROGRAM LOGIC

9.1. LOGIC OF MAIN PROGRAM

The main controller of MP is the routine MAINPGM, with its
subroutines PROCESS DIRECTOR and RESET. When it is first
entered, MAINPGM calls various initialization service
routines and then calls PROCESS DIRECTOR. The latter exits

only when MP is terminating,-in which case MAINPGM calls
various cleanup service routines and itself exits to the
TSO TMP (executive).

PROCESS DIRECTOR supervises the execution of the
asynchronous functions (i.e. coroutines or processes) of
MP. It uses a set of parallel vectors, a cross-section of

which forms a single slot of a "commutator".
PROCESS DIRECTOR calls routine EXWAIT to wait on a set of

events, one for each asynchronous function. EXWAIT returns
when at least one function may proceed, having set event

completion status for all functions. PROCESS DIRECTOR

calls each function for which it finds a completed event,
and then calls EXWAIT again.

RESET is called by PROCESS DIRECTOR whenever it finds

switch RESET REQD set (see function EXIN), and by MAINPGM
at program inTtialization and finalization. RESET calls

each asynchronous function, regardless of its event status,
using the 'Reset' entry points instead of the working entry
points used by PROCESS DIRECTOR. At the conclusion of this
loop, the MP system shauld be returned to an idle state, as
required by the IP SYS Reset message.

-16 . -

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 55

9.2. LOGIC OF ASYNCHRONOUS ROUTINES

Each asynchronous function is associated with a routine,
although some such routines serve more than one function
(e.g., FTS). Each routine has two entry points, the
addresses of which are recorded in the function's slot of
vectors ENTRYPTS and RESETPTS. The ENTRYPTS entry is
called by PROCESS DIRECTOR whenever there is work to be
done for the funcEion. The RESETPTS entry is called by the
same caller when it is necessary for the function to return
itself to an idle state as quickly and cleanly as possiole.
Both types of entry are passed the slot number as a
parameter.

9.2.1. THE EXIN FUNCTION

The EXIN function manages the input channel (#0) of th,
exchange window connecting MP to the network.

EXIN waits on available data from the Exchange window,
and on free buffers to put them in. Whenever a buffer is
obtained and filled, EXIN examines its System and
Function codes and selects an internal work queue

accordingly:

* If the message is SYS Reset, EXIN places the buffer on

a special 1-entry queue, and sets switch RESET REQD.
If the text field of the message is "END", it clears
switch RUNNING so that MP will terminate normally.
EXIN exits at once so that MP reset can occur.

* If the message is WOE Query Job Status or WOE Delete

Job, it is placed on the STATUS work queue.

* If the message is for FTS, and its function code is in

the range 1-5, it is placed on the corresponding one of
the five FTS work queues.

* In all other cases, the message is placed on the

GENERAL work queue.

EXIN is on the receiving end of a Stream-to-Move-mode
Exchange channel. The data on this channel consists of
discrete messages with fixed length headers and
variable-length text fields, although IPTASKC on the
other side of the window is unaware of this. In order to
avoid the problems of deblocking, EXIN currently uses two
complete Exchanges to acquire each message. The first
acquires the 8-byte header, which includes the length of
the text field, and the second acquires the text itself.

-I

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 56

EXIN'S Reset entry is essentially redundant, and does

nothing important.

9.2.2. THE EXOUT FUNCTION

The EXOUT function manages the output channel (#l) of the
Exchange window connecting MP to the Network.

EXOUT waits on output buffers enqueued for him by any
other components, and schedules these buffers through
routine EXCH. Whenever an Exchange operation is complete
EXOUT hangs the corresponding buffer on the free queue.

EXOUT is on the source end of a Stream-to-Move-mode
Exchange channel; however, it does not attempt to block
data buffers per se. Rather, it attempts to maximize the
depth of queueing of EXCH requests. For this purpose, it
builds an NX-position pipeline, setting up to manage the
number of buffers specified by the NX datum in the
parameter deck (see MP EXECUTION PARAMETERS).

EXOUT normally waits on the output buffer queue, which is
EXOUT's input work queue, and moves buffers thus acquired
into the front end of the pipeline by passing them to the
EXCH routine. Before giving up control, EXOUT always
goes to the other end of the pipeline and pulls out all
buffers marked completed by Exchange. These are hung
back on the free queue. The only time that EXOUT
releases control specifying an Exchange as his pending
event is when there are buffers to stuff into the
pipeline, the pipeline is full, and the last buffer in
the pipeline is still not marked complete by Exchange.

When EXOUT is entered for the first time, with its
processing state set to CLEAR, it allocates and
initializes the pipeline, and changes to state GETOUT.
When EXOUT is entered for Reset, unless it has never been

initialized, the following events occur:

* EXOUT's work queue is copied to the free queue.

* Any EXCHanges pending on EXOUT's Exchange channel are
WAITed for (IPTASK on the other side of this window is
not equipped to handle the RESET function of Exchange

* Any buffers found in the pipeline are freed.

* The processing state is reset to CLEAR.

I AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 57

9.2.3. THE FTS FUNCTIONS

The five FTS functions all share a single routine, which,
because of MP programming conventions, does not need to
be reentrant. The purpose of this routine is to copy
data records, either from the Network to a data set or
vice versa.

FTS operates under the control of a processing state that
varies among six values. These are discussed in the
subsequent sections. The routines processing these
states are all entries in a common internal procedure.
This is so they can reference a scope of definition that
does not treat the five FTS data structures as a vector,
and yet avoid undue proliferations of data items. Entry
to one of these routines is always on behalf of a
specific FTS slot.

When FTS is entered for Reset, it copies its work queue
to the free queue. If a file is currently open, it is
closed and FTS issues the TSO command:

FREE F(FTSn)

If the interrupted operation was a SEND, FTS issues the
command:

DELETE 'name'

and updates its history file (see synchronous subroutine
DSNHIST) accordingly. The processing state is set to
CLEAR.

9.2.3.1. THE CLEAR STATE

When entered in CLEAR state, FTS checks its history
file (See synchronous subroutine DSNHIST) to see if
this slot owns a data set that was not scratched, due
to an abnormal termination. If so, FTS issues the TSO
command:

DELETE name

Where "name" is found in the history file. The file is
then updated. In any case, the state is changed to
IDLE, and FTS waits on its work queue.

9.2.3.2. THE IDLE STATE

The IDLE state handles all events that occur when the
slot is not involved in a file transfer. The events
that drive this state are all incoming messages. Three
cases are distinguished:

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 58

* Delete Transfer is echoed as Transfer Deleted.

* Transfer Deleted is ignored, and its buffer freed.

* Any other message is moved to the data portion of a
SYS Invalid Message message and this is returned.

Exit from IDLE state occurs under the control of

subroutine FSTART of function GENERAL.

9.2.3.3. THE START STATE

The START State is set by subroutine FSTART of function
GENERAL whenever an FTS slot is assigned to a Start Get
File or a Start Send File. At the same time, the
request buffer is hung on the FTS slot's work queue.
The only reason for making this state change is to
avoid FSTART's assigning two such requests to the same
slot; otherwise this processing could occur in state
IDLE.

FTS breaks down the input message and sets the DSNAME,
transmission direction and mode, request handle, and
similar values in its data area. FTS issues the TSO
command:

ALLOC F(FTSn) DA(name)

Where un" is the FTS transfer channel number (1 - 5),
and "name" is the result of applying OUTDSN to the name
supplied by WMO. For SEND operations in "F" mode,
routine MAKEF is called to convert the data set
characteristics to those preferred for printer images
(VBA 137). In any case, LOOKUP is called to determine
the actual data set characteristics, and the file is
OPENed.

If at any time during this process an error occurs, FTS

issues the TSO command:

IFREE FTSn

and abandons the process. If no errors occur, then the
processing state is set to either PASS or RECEIVE. If
RECEIVE, the FTS history file (see synchronous
subroutine DSNHIST) is updated so that the data set
will be scratched on recovery from any crash.

In all cases, the selected reply is enqueued for EXOUT,
and FTS waits, in its new mode, for an input buffer.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 59

9.2.3.4. THE PASS STATE

The PASS state performs the GET operation. The event
that drives this state is the availability of a free
buffer. Because FTS does not attempt to control the

implicit wait in its PL/I READ statement, it always
returns to let the commutator go around, whether a free
buffer is immediately available or not.

On being entered in PASS state, if FTS finds an
incoming message for this transfer, it can only mean
that WMO has aborted the transfer. FTS closes and
frees the file, returns a Transfer Deleted, sets the
processing state to IDLE, and waits for another input
buffer.

If FTS finds a local error condition, it closes out the
transfer similarly, but returns Delete Transfer and
sets the processing mode to RESYNC.

If FTS finds an end-of-data condition it closes out the
transfer similarly, but returns Normal EOF and sets the
processing Mode to IDLE.

If FTS reads a record from the data set without
encountering any exceptional condition, it returns the
record and leaves the processing state unchanged.
Trailing blanks are truncated from such records except
in the case of binary data. Binary records are forced
to be of length LRSC by either truncation or padding
with zeros.

Whenever FTS exits PASS state for any reason, it issues
the TSO command

FREE F(FTSn)

and writes a statistical record to the journal. This
record includes the transfer channel number, the number
of records transmitted, and the average rate of
transmission.

9.2.3.5. THE RECEIVE STATE

The RECEIVE state performs the SEND operation. The
event that drives this state is the arrival of an input
buffer. Like the PASS state, RECEIVE does not attempt
to control implicit waits in its PL/I WRITE statement.
However, because the controlled wait for input data is

*expected to be the limiting factor here, RECEIVE does
not give up control unconditionally just to allow the
commutator to go around.

a -

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 60

If FTS receives Delete Transfer it closes the file and

issues the TSO command:

DELETE name

Where "name" was saved from the process of initializing
the transfer. It then returns Transfer Deleted and
enters IDLE state.

If FTS finds a local I/O error, it also deletes the
data set, but returns Delete Transfer and enters RESYNC
state.

If FTS receives Normal EOF it issues the TSO commands:

RELEASE name
FREE F(FTSn)

Where On" is the FTS transfer channel number. It then
returns Transfer Complete, and enters IDLE state.

If FTS receives a data record and no exceptional
conditions arise, it writes the data to its output
file, frees its buffer, and remains in RECEIVE state,
waiting for the next input buffer. If the record
format of the output data set is "F", the record is
forced to that length by padding or truncation (padding
is by blanks for character data, zeros for binary).
Otherwise, the data is written as is unless truncation
is necessary to avoid exceeding LRECL.

Whenever FTS exits RECEIVE state for any reason, it
writes a statistical record to the journal. This
record includes the transfer number, the number of
records transmitted, and the average rate of
transmission.

9.2.3.6. THE RESYNC STATE

The RESYNC state resynchronizes a slot with WMO after
FTS has aborted a transfer. The event that drives this
state is the arrival of an input buffer.

If FTS receives Delete Transfer it returns Transfer
Deleted and remains in RESYNC state.

If FTS receives Transfer Deleted, it frees the input
buffer and enters IDLE state. Resynchronization is now
effected.

If FTS receives anything else, and the aborted transfer
was a SEND, the buffer is simply freed. However, if
the aborted transfer was a GET, the entire message is
returned in the data field of a SYS Invalid Message

... ... "--- ------ _ ...=:-----,---- : ,

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 61

message. In neither case is the processing state

changed.

9.2.4. THE NOTIFY FUNCTION

The NOTIFY function accepts no input from the Network,
but generates unsolicited Job Done messages as output.
NOTIFY's primary waits are on a "notify" ECB connected to
the Generalized Message Facility (GMF) and on the free
buffer queue. Even when GMF is found to be
non-functional, NOTIFY waits on the GMF ECB. It will be
POSTed periodically by the TIMER function, thus waking
NOTIFY to attempt to reconnect to GMF.

During normal operation, NOTIFY sleeps until GMF POSTs
its Hnotify" ECB. Then NOTIFY reads the GMF message
queue selected for notification (see MP EXECUTION
PARAMETERS), copying all messages to the jobs-in-output
table using routine JTADD. Routine MAKENOT is called to
format and send unsolicited Job Done messages, and the
GMF messages are deleted from the notification queue.
These operations are ordered to minimize the effects of
interruptions caused by loss of contact with GMF.

If NOTIFY finds that the selected notification queue is
nonexistent or has the attribute "temporary," it issues
an ALARM call to JOURNAL, which has the effect of
aborting MP.

On being called for Reset, unless the processing state is
already CLEAR, Notify resets it to that and closes its
GMF window.

9.2.5. THE STATUS FUNCTION

The STATUS function responds to WOE Query Job Status and
WOE Delete Job messages, and maintains the jobs-in-output
table. It waits for message buffers from EXIN, and,
occasionally, for free buffers. The present version does
not use the asynchronous features of the GMF interface
package, so those waits are uncontrolled.

When STATUS is entered in state CLEAR, it uses JTREAD
repeatedly, constructing the in-core masks of the
jobs-in-output table.

When entered in state RESETTING, STATUS scans this table,
using JTREAD and MAKENOT selectively to transmit
unsolicited Job Done messages for all jobs in output.
Since this involves the aquisition of free buffers, there
is a companion state, RSWAITBUF to control possible
buffer waits.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 62

When entered in state PROCESS, STATUS will be holding

either a Query Job Status message or a Delete Job
message. For a Query Job Status, TMTSTAT is called to
search the OS queues. If it is found, TMTSTAT's output
is returned as the reply (see the section on TMTSTAT for
the values returned). Otherwise, the jobs-in-output
table is searched. If the job is found here, both an
unsolicited Job Done message and a Status Reply message
are formatted and sent. In this case, STATUS sets the
modifier field to "05" and the data field to "jobname
READY FOR RETRIEVAL". If the job is not found here, the
"job not found" response originally built by TMTSTAT is
sent. Since this process may involve the aquisition of
free buffers, there is a companion state, GETBUF, to
control possible buffer waits.

When entered in state PROCESS holding a Delete Job
message, STATUS first locates the job. If it is :Ln an OS
queue, STATUS returns Not Done. Otherwise, JTDEL is
called, and the Job Deleted response is returned. Notice
that this does not mean that the job was actually
"deleted," but that the job number, by one way or
another, is free.

When entered for Reset, STATUS determines whether an
actual Reset message has been received from the WMO, by
testing switch RESET REQD. If this switch is off, STATUS
sets its state to CLEAR. If the switch is on, STATUS
sets its state to RESETTING, and initializes the loop
that will later be used to scan the jobs-in-output table.
In either case, the STATUS work queue is freed.

9.2.6. THE OPR FUNCTION

The OPR function will monitor for, and respond to, local
operator commands affecting MP execution. Because no
such commands are currently defined, OPR is a null
function.

When entered normally, OPR waits for work on special
queue FREEZEANC. This queue is never POSTed, so OPR
should never be reentered unless a Reset occurs. When
entered for Reset, OPR returns without action.

9.2.7. THE GENERAL FUNCTION

The GENERAL function completes processing of all Network
messages not specifically assigned elsewhere by EXIN.
These messages share the property that they never return
more than one reply buffer. GENERAL consists of a
routine to select a processing function and a set of
routines tailored to specific messages. These will be
discussed below.

C'$

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 63

When called for Reset, GENERAL simply frees any buffers
on its work queue.

9.2.7.1. THE FSTART PROCESSOR

FSTART gets all FTS messages that have not yet been
assigned a transfer number - that is, FTS Start Send
File and FTS Start Get File. The set of FTS slots is
scanned to find one in state IDLE. If none is found, a
No Free Channel message is returned. Otherwise, the
request is re-enqueued on the selected FTS work queue,
the processing state for that slot is changed to START
(to prevent its re-use), and a switch is set so that
GENERAL will not try to return an immediate reply for
this message.

9.2.7.2. THE CREAD MESSAGE PROCESSOR

CREAD processes CAT Read File Name messages. It
allocates file CREAD to the requested DSNAME and calls
an Assembler-language routine, LOOKUP, to get the
attributes of the data set thus allocated. If any
error is found, an error reply is returned to GENERAL.
Otherwise, LOOKUP's output is edited into the
prescribed data field format and this is returned.
CREAD uses routine OUTDSN to convert standard output
DSNAME's to their actual form.

CREAD issues the following TSO commands:

IFREE CREAD
ALLOC F(CREAD) DA(name) SHR
FREE F(CREAD)

Where "name" is the result of applying OUTDSN to the
name given by WMO.

9.2.7.3. THE CENTER MESSAGE PROCESSOR

CENTER processes CAT Enter File Name messages. First
it breaks out the request's subfields, and may return
an immediate error reply. It then builds TSO ATTRIB
and ALLOC commands and executes them, using a fixed
DSNAME. If this is successful, CENTER calls its
private subroutine FINDNAME, which issues RENAME
commands until either one is successful or the
combinations allowed by the pattern of wild characters
in the request are exhausted. This process uses
Assembler-language routine PERM for wild character
substitution.

W- Wd --" -1; 1-1

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 64

If a RENAME succeeds, the DSNAME is returned to WMO.
Otherwise, the dataset is scratched with a TSO DELETE
command, and an error reply is returned. The TSO
command sequence is typically:

FREE ATT(@@)
DELETE @.inits
ATTRIB @@ REC(F B) BL(blo) LRE(lre)
ALLOC DA(@.inits) F(CENTER) BLO(blo) SPACE(pri,sec)-

USING(@@) VOL(vol) NEW
RENAME @.inits newname
FREE F(CENTER)

Where:

"inits" is the TSO Userid of the pseudouser driving

this IP server session.

"blom is LRECL * IP RPB * BF, where 'BF' is an input
parameter (see MP EXECUTION PARAMETERS).

"lre" is IP LRSC.

"prim is = IP NRECS / (IP RPB * BF), rounded up.

*sec" is "prim / 5, rounded up.

"vol" is the AV input parameter (see MP EXECUTION
PARAMETERS).

"newname" is a name generated by applying PERM to the
skeleton name provided by WMO.

The RENAME command may be repeated. If any error is
encountered, the above sequence is abandoned and CENTER
issues the command:

DELETE @.inits

9.2.7.4. THE CPURGE MESSAGE PROCESSOR

CPURGE processes CAT Purge File messages. It issues
the TSO command:

DELETE name

Where "name" is the result of applying OUTDSN to the
data set name. CPURGE returns a result selected from
the result of the command, without actually testing for
success.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 65

9.2.7.5. THE CRENAME MESSAGE PROCESSOR

CRENAME processes CAT Rename File messages. It issues
the TSO command:

RENAME namel name2

Where:

"namel" is the the result of applying OUTDSN to the
old data set name. CRENAME uses OUTDSN for system
consistency, even though it might be considered

illegal to rename a Standard System Output data set.

"name2" is the new data set name.

9.2.7.6. THE SUBMIT MESSAGE PROCESSOR

SUBMIT processes WOE Submit Job messages. It breaks
out its data field, allocates the data set to a
standard file, calls OENSUB, frees the file, and
returns the result of OENSUB. The charge number,
destination class, password, and notify queue that
SUBMIT passes to OENSUB are those supplied by the MP
parameter data set (see MP EXECUTION PARAMETERS).
SUBMIT uses OUTDSN for system consistency, even though
it might be considered illegal to submit a Standard
System Output data set.

9.2.7.7. PROCESSING OTHER MESSAGES

If the input message is SYS Echo, GENERAL does not
process it at all, but simply enqueues the buffer for
output transmission. If it is anything else, the
entire message is placed in the data field of a SYS
Invalid Message message, and that is returned.

9.2.8. THE TIMER FUNCTION

The TIMER function provides a basic "checkpoint" facility
for MP. It maintains an outstanding timer interval of
the number of minutes specified by parameter "TI" (see MP
EXECUTION PARAMETERS), and on expiration of that
interval, performs certain periodic functions.

9.2.8.1. JOURNAL PROTECTION

One periodic function attempts to minimize the risk
that the MP journal will be lost due to system failure.
For this purpose, whenever a checkpoint interval passes
during which there has been no journal activity other
than that explicitly requested from TIMER, then if the
journal contains data other than TIMER's checkpoint
records, then JDSFIN and JDSINIT are called, thus
scheduling the current journal data set for printing.

LI

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 66

9.2.8.2. STATISTICAL MONITORING

Another periodic function is the writing to the journal
of statistical records noting the current level of MP's
utilization of the Host Operating System's resources.
TIMER uses subroutine ACTSTAT to acquire these
statistics, and calls JOURNAL to write them.

9.2.8.3. GMF RETRY

TIMER posts NOTIFY's GMF notification ECB. If GMF has
crashed and recovered, this should cause NOTIFY to
reconnect. If all is well already, nothing is hurt.

9.2.9. SUMMARY OF ASYNCHRONOUS DEPENDENCIES

The asynchronous facilities of MP are not completely
generalized. Many WAIT situations occur, in the
processing of most messages, which will momentarily block
the entire MP package. However, there is a level of
synchronization which is under MP's control. This
effectively divides IP messages into several groups.
Within each group, all messages are processed absolutely
sequentially. Between groups, MP will do what it can to
overlap processing. These groups are:

9.2.9.1. RESET

When a SYS Reset message is received, it is acted on as
soon as possible. However, this may not be until
routines processing one of the other groups come to a
WAIT situation.

9.2.9.2. NOTIFICATION

The unsolicited Job Done message, when it is NOT a
retransmission, is asynchronous to all other messages.

9.2.9.3. STATUS

The following messages are processed absolutely
sequentially:

SYS Query Job Status
SYS Delete Job
Any retransmitted unsolicited Job Done message.

9.2.9.4. GENERAL

The following messages are processed absolutely
sequentially:

4,l

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 67

FTS Start Send File
FTS Start Get File
CAT Read File Name
CAT Enter File Name

CAT Purge File
CAT Rename File
WOE Submit Job
SYS Echo
SYS Invalid Message
All messages with unknown Subsystem/Modifier codes.

FTS Start Send File and FTS Start Get File are special
cases. Their processing is begun in this group.
However, if a free FTS transfer channel is found, the
rest of their processing is turned over to the FTS
group. Between these two parts of processing, any
other messages for the GENERAL group will be processed.

9.2.9.5. THE FIVE FTS GROUPS

Once FTS Start Send File or FTS Start Get File is
turned over to FTS, all further processing of that
message and of subsequent messages for that transfer
channel are processed absolutely sequentially. There
are five FTS channels, and each of these functions
absolutely independently of and asychronously to all
others.

: 4
I
I,

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 68

9.3. LOGIC OF SYNCHRONOUS ROUTINES

The synchronous service routines can be called by any
function at any time, without that function's risking
losing control to PROCESS DIRECTOR.

9.3.1. EXCHANGE MANAGEMENT PACKAGE

The Exchange Management Package is used to interface MP
with IPTASK and hence the ARPA Network. It consists of
the CCN PLOXI package and module EXDONE.

9.3.1.1. PLOXI PACKAGE

Modules of the PLOXI package that are used by MP are:

* EXCH

* EXOPEN

* EXCLOSE

* EXWAIT

These modules are fully documented elsewhere (see Ref.
8) and will not be further covered here.

9.3.1.2. EXDONE ROUTINE

EXDONE is a simple routine used by EXIN and EXOUT to
set up the standard values needed to WAIT on a PLOXI
ECB. EXDONE accepts an EXCH ID, an EXCH Return code,
and a slot number, and returns a Boolean (I bit) flag.
If this flag is True then the Exchangf is complete, and
the caller must not wait. If it is False, the caller
may wait by merely issuing RETURN.

9.3.2. JOB MANAGEMENT PACKAGE

The Job Management Package keeps track of the jobs
created by MP as they move through the host operating
system and into MP's GMF message queues.

9.3.2.1. GMF INTERFACE

MP uses the PLIX-callable interface routines to GNF
(the Generalized Message Facility). In particular, the
following modules from this interface package are used
by MP:

* GMOPEN

., "

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7~PAGE 69

* GMCLOSE

* GMUSER

* GMQUEUE

These modules are fully documented elsewhere (see Ref.
9) and will not be further covered here.

9.3.2.2. THE JOBMGT ROUTINE

JOBMGT is a group of entries used by both STATUS and
NOTIFY to manipulate the jobs-in-output table. This
table consists of a disk data set containing 256
138-byte GMF messages, initially set to all blanks.
The table is summarized in core by two 256-bit masks:
JOB IN OUTPUT identifies those job numbers for which
thee -are non-null records in the data set, and
STRANGE DSN identifies those whose Standard System
Output Tiles bear other than the default name.

Routines provided are:

* JTREAD returns the file record for a job. In the
process, it corrects the in-core masks, so it can be
used for initialization.

* JTADD adds a job to the table. If it overlays an
existing job, the old one is deleted, and an operator
message is written.

* JTDEL deletes a job from the table. If the
associated output data set still exists, JTDEL issues
the TSO command

DELETE 'name'

where "name" is read from the jobs-in-output record.

* MAKENOT formats and enques a buffer for the
unsolicited Job-Done message. MAKENOT accepts a
pointer to an MP buffer and a pointer to a GMF
message record (including the 20-byte time/date stamp
area). On return, the buffer has been enquejed for
EXOUT, so the caller no longer owns it.

* OUTDSN examines a DSNAME. If it is the name for a MP
Standard System Output data set, and if that job has
used another DSNAME, then OUTDSN returns the DSNAME
actually used. Otherwise, it returns its input
string. OUTDSN both accepts and returns CHAR(46)
VAR. The input DSNAME can be in either of the two
TSO forms, that is, either qualified and quoted, or
simple and unquoted. The returned result is not

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 70

necessarily in the same format as the input.

9.3.2.3. THTSTAT AND INTMT

TNTSTAT is an Assembler-language routine which formats
a status reply for jobs still in the host operating
system. It accepts a pointer to an MP buffer, the data
area of which contains the job name to be queried, and
returns a Boolean (1-bit) flag. This flag will be True
if the requested job was found, otherwise False. In
either case, a descriptive message will have been added
after the 8-character job name in the buffer, and the
MODIFIER field set according to this convention:

00 -- > Job not found
01 -- > Job running
02 -- > Job in Output Queue
03 -- > Job in Input Queue
04 -- > Job reading

INTNT is an alternate entry which merely returns the
Boolean flag.

This routine uses CCN Service SVC 11 (see Ref. 10) to
locate the job step TCB address.

9.3.2.4. OENSUB ROUTINE

OENSUB is an Assembler-language interface to the SUBMIT
function of the CCN Routing SVC (see Ref. 7). OENSUB
returns a halfword result code and is called with the
following parameters:

* The 8-character job name to be assigned the job (the
name on the JOB card is ignored). By CCN
convention, the job's Charge Number is the first six
characters of the job name; the last two characters
are derived from the <WHO job no>.

* The 8-character file name allocated to the data set
containing the job.

* The 8-character destination name. (This is normally
a SYSOUT class name.)

* The 8-character batch password for the job's Charge
Number.

* The 60-character output path definition. This
consists of the 44-character DSNAME to be given the
NP Standard System Output (the data set which will
receive the linearized output from the job), followed
by the 8-character GMP Queue name to be used to
notify NP of the job's completion, followed by the

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 71

8-character Volume Name of the Volume where the
output data is to be placed.

OENSUB returns the return code from the Routing SVC.
All the caller needs to know about this is that if it
is nonzero an error occurred and the job was not
submitted.

9.3.3. DATA SET MANAGEMENT PACKAGE

The data Set Management Package performs auxiliary
functions for the data set manipulative parts of MP.

9.3.3.1. DSNHIST ROUTINE

The DSNHIST routine manages file DSNFILE. This file
must be allocated to a data set containing five
56-character records, initialized to blanks. FTS will
note there the names of data sets that should be
scratched during crash recovery.

Entry HISTIN accepts a halfword transfer number in the
range 1-5 and a varying string. The record
corresponding to the number is read into the string.

Entry HISTOUT accepts the same parameters as HISTIN.

The indicated record is overwritten by the string.

9.3.3.2. LOOKUP ROUTINE

LOOKUP finds and/or calculates the attributes and
values associated with an allocated data set. If it
encounters any error, it simply returns zero values.
LOOKUP accepts:

* the 8-character file name allocated to the data set.

* the halfword fudge factor used to convert OS blocking
factors into IP RPB. Normally, this is the BF
parameter (see MP EXECUTION PARAMETERS).

* the address of an area of six halfwords, into which
LOOKUP is to place:

1) the OS Record Format ("U", "F", or V). The
second character is set to blank.

2) the OS LRECL.

3) the OS BLKSIZE.

4) the IP LRSC -- this is equal to LRECL after any
count bytes have been subtracted.

*I

At.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 72

5) the IP RPB -- if the data set has carriage
control, this is set to 5. Otherwise, it is
(MIN(MAXBLK,BLKSIZE/BF))/LRSC, where MAXBLK is
currently 1000, BLKSIZE is used less 4 for variable
records, and BF is an input parameter (see MP
EXECUTION PARAMETERS).

6) the IP NRECS -- this is a rough approximation,
calculated as follows:

" BLKSIZE is converted to Blocks Per Track (BPT)using the BTON service of the CCNDEVTP SVC (See
Ref. 13).

* The number of blocks (NB) is the number of tracks

in the data set times BPT.

* Unless RECFM is U, this is multiplied by RPB.

* Unless RECFM is F, this is multiplied by 3, under
the assumption that the average record is
probably 1/3 LRECL.

* The result is called NRECS.

9.3.3.3. MAKEF AND MAKEE

MAKEF is an Assembler-language routine which alters the
characteristics of a data set which is about to be
overwritten with printer image records. It accepts the
8-character file name allocated to the data set.

MAKEF forces the record format to NVBA". If it was not
already "V", then MAKEF adds 4 to the LRECL and ensures
that the BLKSIZE is at least 4 greater than that. It
does all this in a DCB exit entered while OPENing a
file to the data set.

MAKEE is an alternate entry to MAKEF. Its action is
similar; however, instead of operating on the data set
attributes, MAKEE makes the data set empty.

9.3.4. BUFFER MANAGEMENT PACKAGE

The Buffer Management package effects the passing of MP's
internal buffers among various work queues, and the
"POSTing" of functions waiting on those queues. For
convenience and simplicity, some code translation and
journalling services are invoked from within this
package.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 73

9.3.4.1. NDEQ ROUTINE

Routine NDEQ dequeues a buffer from a work queue for
the caller. If there is nothing on the queue, the
caller is added to the queue's wait chain and control
values are set up such that the caller can wait for
work merely by issuing RETURN.

NDEQ returns a Boolean (1-bit) result: False if a
buffer was obtained and True if the caller should wait.
This polarity is chosen to facilitate use of the form:

IF NDEQ C . . .) THEN RETURN;

NDEQ accepts a pointer to the work queue and a pointer
to the caller's 3-word wait queue element. The first
word of this element is the buffer pointer. The third
word must have been initialized to the caller's slot
number.

9.3.4.2. ENQ ROUTINE

Routine ENQ adds a buffer to a work queue, or, if
someone is waiting on the queue, gives him the buffer
and makes him dispatchable.

ENQ accepts a pointer to a work queue, a buffer

pointer, and a halfword type indicator. The type code
is used to control journalling and code translation.
Set it negative to disable these services. If it is
not negative, it should be selected from the array
JOURNAL MSGS defined in %INCLUDE block COMMON. JOURNAL
will then be called, specifying the buffer and the
type.

If the type is one of the "outgoing" types, and if
translation is enabled, then the System, Function, and
Modifier fields of the buffer are translated from
EBCDIC to ASCII, and, unless the type is
OUTGOING-BINARY, the Data portion is also translated.

If the type is INCOMING DATA or INCOMING MSG, and if
translation is enabled, then the data field- (only) of
the buffer is translated from ASCII to EBCDIC.

9.3.4.3. COPYQ ROUTINE

Routine COPYQ accepts a pointer to a work queue. If
buffers are enqueued in the queue, they are all
dequeued and placed on the free queue. During this
process, any waiters on the free queue will be dequeued
without POSTing.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 74

COPYQ is intended for use by the Reset entries of the

asynchronous functions.

9.3.5. COMMAND MANAGEMENT PACKAGE

The TSO Command Management Package enables MP to invoke
TSO command processors and to retrieve a status reply
encoding the information that is normally written
irretrievably to the TSO terminal. It consists of
several parts:

9.3.5.1. COMMAND ROUTINE

The COMMAND routine accepts a character string to be
interpreted as a TSO command, and a Pointer to a vector
of error codes. It returns a halfword result
indicating the most severe error that was found. The
format of the error vector need not concern most
callers, as they will use one of the following data
from %INCLUDE packet COMMON:

ALLOC ERRS
FREE ERRS
ATTRIB ERRS
DELETE ERRS
RENAME ERRS
NULLERRS

COMMAND returns a value selected from array
BASIC SITUATION declared in the %INCLUDE packet COMMON,
namely:

OK
DUPLICATE THING
THING NOT FOUND
IO ERROR -

TABLE OVERFLOW
OTHER ABORT

9.3.5.2. NSWCMD ROUTINE

Routine NSWCMD is an assembler-language adjunct to
COMMAND. It has three entries:

9.3.5.2.1. COMEXEC is called by COMMAND, and it, in turn, calls
a TSO Command Processor using the CCN TMPMAC service
(see Ref. 14). COMEXEC's first parameter is the
command string, and the second is a varying string to
receive the concatenation of 6-character strings,
each of which is a 5-character TSO message ID number
followed by a blank. The length of this string
indicates how many such codes are returned (note that
the final trailing blank is truncated). COMEXEC
returns a halfword value which is the code returned

AN iP sERVER FORNS
April 1, 1976 -- CCN/TR7

PAGE 75

in GR15 by the TSO Command Processor.

9.3.5.2.2. COMINIT must be called before any other use is made
of this package. It LOADs modules IKJPTGT, IKJGETL,
and IKJPUTL from file IKJPUTL (this ensures that I/O
using those names can be intercepted).

9.3.5.2.3. COMFIN should be called when this package is no
longer needed to DELETE the modules LOADed by
COMINIT.

9.3.5.3. IKJPUTL ROUTINE

Module IKJPUTL, alias IKJPTGT and IKJGETL, is an
Assembler-language routine which is LOADed by COMINIT.
Until it is deleted, its entries will intercept the
calls generated by the Macros PUTLINE, GETLINE, and
PUTGET whenever they are executed within the scope of
its load-list entries. The actions of these entry
points are:

9.3.5.3.1. IKJGETL: If COMMAND is currently active, control is
returned to the caller with the nAttention" return
code. Otherwise the true IKJGETL is called.

9.3.5.3.2. IKJPUTL: If COMMAND is currently active, and if an
Informational Message is being passed for other than
the Format-Only Function, and if the first segment
(only) of this message is long enough to have a
message identifier field, and if the fourth through
eighth bytes are all numeric, and if there is still
some room left in COMEXEC's error string, then the
fourth through eighth bytes of the first segment of
the message are appended to the string, followed, if
there is room, by a blank. In any case, control
passes on to the true IKJPUTL module.

9.3.5.3.3. IKJPTGT: If COMMAND is currently active, and if
input is actually being requested, control is
returned to the caller with the "Attention" return
code. Otherwise, the true IKJPTGT is called.

9.3.5.4. ERRIDS SECTION

ERRIDS is a STATIC EXTERNAL section in which occur the
standard error codes referenced by the %INCLUDE packet
COMMON. It is generated during compilation of dummy
routine COMMONS, and connected to the standard error
code pointers during execution of routine GETPARM.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 76

9.3.6. JOURNAL MANAGEMENT PACKAGE

The Journal Management package maintains a cumulative
journal of all MP activities to which it is made privy.
Various types of output records are defined by array
JOURNAL MSGS in %INCLUDE packet COMMON. Output of each
can be- disabled parametrically for each execution of MP
(see MP EXECUTION PARAMETERS).

It is important that JOURNAL be called as often and by as
many other routines as possible. Otherwise, the invoker
of MP loses flexibility in tracking down problems.

The journal is normally printed, not kept for analysis.
It is scheduled for printing every time a specified
number of lines is written (see MP EXECUTION PARAMETERS),
or whenever an external routine (such as the TIMER
function) calls the appropriate entries.

Journal data can be independently routed to three
different destinations: a SYSOUT class, the TSO
terminal, and an arbitrary TSO user. This is controlled
by the JS, JO, and MU parameters (see MP EXECUTION
PARAMETERS).

9.3.6.1. JDSINIT initializes Journal Management. It issues this
TSO command sequence:

IFREE JOURNAL
ALLOC F(JOURNAL) SYSOUT BLOCK(jbs) SPACE(pri,sec)

Where:

"jbs" is the JBS input parameter (see MP EXECUTION
PARAMETERS).

"pri" is the JKT input parameter divided by 2.

"secO is the JKT input parameter divided by 10.

9.3.6.2. JDSFIN finalizes Journal Management. It issues the TSO
command:

FREE F(JOURNAL) SYSOUT(js)

Where wjs" is the JS input parameter (see MP EXECUTION
PARAMETERS).

9.3.6.3. JOURNAL accepts a character string to be written to the
journal, and a halfword message type indicator. The
message is written to the journal only if it has been
initialized and enabled for that message type. If this
brings the line counter to its threshold value, JDSFIN
and JDSINIT will be called.

ALA-

!|AN 1 SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 77

When a message of type ACTION REQUIRED is written to
the journal, it is also written to the system operator
via the PL/I DISPLAY verb. But note that if this
message type has been parametrically disabled (see MP
EXECUTION PARAMETERS), no processing at all occurs.

When a message of type ALARM is written to the journal,
it is written via DISPLAY, and JOURNAL executes SIGNAL
ERROR. But note that if this message type has been
parametrically disabled (see MP EXECUTION PARAMETERS),
no processing at all occurs. This must not be done in
the current implementation, because cafllfrs who use
this feature to terminate MP abnormally do not now
provide a control path for a RETURN from such a call to
JOURNAL.

9.3.7. PARAMETER MANAGEMENT PACKAGE

The Parameter Management Package consists of entry
GETPARM, called by the initialization section of the Main
Control module. It reads and decodes the parameter data
set that may be supplied for each execution of MP. The
parameter data is read from file PARMS, where it is
formatted for a single GET DATA statement. Permitted
names and defaults are given in MP EXECUTION PARAMETERS.
GETPARM prints a copy of its input, and a list of all
options in effect, using PL/I file SYSPRINT.

9.3.8. TIMER MANAGEMENT PACKAGE

The Timer Management package consists of
Assembler-language routine TIMSRVS, with its three entry
points.

9.3.8.1. STIMER

STIMER interfaces to the Host Operating System's "Set
Interval Timer" services. It accepts these parameters:

* A time interval in hundredths of a second. If this
is zero, the request is to cancel any outstanding
time interval without POSTing. Otherwise, any new
interval automatically cancels any old interval
outstanding for the same task, again without POSTing.

* The address of an EC;B. This will be cleared, and
POSTed when the interval expires normally.

* The address of a seven-word work area that STIMER can
consider his own until the interval expires or is
cancelled.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 78

9.3.8.2. TBEGIN

TBEGIN notes the begining of an interval to be measured
by TEND. It accepts the address of a two-fullword workarea which the caller agrees not to change until the
matching call to TEND has been made.

9.3.8.3. TEND

TEND measures the real elapsed time since the matching
call to TBEGIN. It accepts the same address as was
passed to TBEGIN, and returns a fullword containing
elapsed time in .01 seconds.

9.3.9. MISCELLANEOUS SERVICES

9.3.9.1. HEX ROUTINE

HEX accepts a pointer, a halfword byte count, and an
optional halfword increment to be added to the pointer.
It returns a varying character string which is the
hexadecimal field representation of the memory bytes so
indicated. Be sure that HEX is declared to return a
string at least 1 greater than twice the maximum value
of the byte count, as HEX does its UNPK right into the
output string.

9.3.9.2. IDINIT ROUTINE

IDINIT accepts two 8-character strings and fills them
with the Charge Number and TSO Userid under which it
finds itself running.

9.3.9.3. NEGPTR ROUTINE

NEGPTR accepts a pointer and returns a pointer which is
the arithmetic negative of the input. This is as
required by PLOXI routine EXWAIT.

9.3.9.4. NOERR ROUTINE

NOERR turns off the PL/I STAE for debugging. It is
documented elsewhere (see Ref. 15).

9.3.9.5. PERM ROUTINE

PERM produces all legal substituends for a character
string containing "wild" characters. It accepts a
varying character string which may contain up to seven
question marks. It returns a substituted value of the
same length. Each time PERM is called it will return a
different value, and if the same caller calls it enough
times sequentially, it will eventually return a
duplicate of the first value returned. Only this tells

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 79

the caller that his case is hopeless.

PERM is self-initializing and non-read-only. Whenever
it finds a zero value already in its cumulative
counter, it picks up a random value from the system
timer. Whenever it generates a zero value, it skips
it, advancing to I (otherwise, a caller might never
duplicate his first received value).

9.3.9.6. SCANNER ROUTINE

SCANNER builds a table of SUBSTR parameters breaking a
given data string down into simple subfields delimited
according to a pattern string. The pattern consists of
an odd number of characters, each "PAIR" of which
consists of a "TYPE" ("N" for numeric fields, anything
else for anything else) and a terminator (not present
in the final "pair"). The output table has three
columns. The first two are *SUBSTR" parameters and the
third is the numeric equivalent of the substring (0 for
non-"N" subfields). The table is filled in for as many
entries as there are pattern "PAIRS", even if this
means using zero length values in the final rows.
Table overflow checks are not made -- this is the
caller's problem.

SCANNER returns a Boolean (1-bit) value which is always
True unless a non-numeric character was found in a
numeric subfield. If the value is False, there is no
indication of how many errors occurred, or where. The
corresponding numeric equivalents are calculated as if
invalid characters were compressed out ("3X2B1 -> 321,
"TEN" -> 0). Null numeric fields are considered valid,
and have the value zero. This routine uses masking to
convert a numeric EBCDIC character to binary, which
means it is EBCDIC-dependent.

9.3.9.7. TPUT AND TPUTUID

TPUT writes a character string out to the terminal. A
second entry, TPUTUID, writes to the terminal of a
specified TSO user. The program is documented
elsewhere (see Ref. 16) and is not further covered
here.

9.3.9.8. UNHEX ROUTINE

UNHEX accepts a character string not longer than 8
bytes, which had better contain nothing but legal
hexadecimal field data. It returns a binary fullword
equivalent. Invalid input results in invalid output,
with no explicit notification of the fact.

- . k iifffii"

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 80

9.3.9.9. XATOE ROUTINE

XATOE accepts a character string which it translates
from ASCII to EBCDIC. It uses a copy of CCN standard
table CCNTRATE.

9.3.9.10. XETOA ROUTINE

XETOA accepts a character string which it translates
from EBCDIC to ASCII. It uses a copy of CCN standard
table CCNTRETA; however, it alters the first byte of
this copy so that EBCDIC "Null" (X'00') is treated like
EBCDIC Nblank" (X'40').

9.3.9.11. ACTSTAT ROUTINE

ACTSTAT acquires resource utilization statistics from
the Host Operating System and formats a text string
suitable for output via JOURNAL. Certain values are
saved between calls to ACTSTAT, so that incremental
statistics can also be produced. For this reason, the
caller must pass a pointer to a nine-fullword work
area, initialized to zeros, and not subsequently
modified. ACTSTAT returns a varying character string
containing captions and values for:

* Checkpoint number -- a cumulative counter.

* Real time, both cumulative and incremental.

* CPU time, both cumulative and incremental.

* I/O count, both cumulative and incremental.

* Swap count, both cumulative and incremental.

* Swap load, both cumulative and incremental.

* MUS, both cumulative and incremental (see Ref. 11).

* Total cost, both cumulative and incremental.

* The effective Region size.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 81

9.4. MP EXECUTION FILE REQUIREMENTS

Assuming that you have the mechanisms for invoking and
feeding MP as a TSO session, you must set up either a LOGON
procedure or a command procedure to allocate needed files.
You will need the following files:

* File IKJPUTL should be allocated the load library

containing MP's special version of IKJPUTL and its
aliases. This can be the same library that contains MP
itself, or a different one. The file name IKJPUTL is not
used for any other purpose.

* File PARMS should be allocated the data set containing
the input parameters. If you have none, you can omit this
file.

* File DSNFILE should be allocated a specific data set for
each IP server executing MP, as it has a continuity
function. This data set is described under JOB
MANAGEMENT.

* File JOBFILE should be allocated a specific data set for
each IP server executing MP, as it has a continuity
function. This data set is described under JOB
MANAGEMENT.

* File SYSPRINT should be allocated for the PLIX running
system, and for GETPARM's option lists.

* Pile PLIDUMP should be allocated if you want a dump on
ERROR conditions.

* A minimum of nine DD DYNAM's should be available. These
are for FTS (5), GENERAL (1), the Journal (1), and
various TSO Command Processors (2) called by MP.

IJ

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 82

9.5. MP EXECUTION PARAMETERS

Name Type Dflt meaning

AV CHAR(8) 'NSWP01' The volume to be used for data set
allocation in CAT ENTER NAME
processing. WOE SUBMIT also requests
this volume for the allocation of
Standard System Output files.

BF FIXED 1 The conversion factor between IP RPB
and OS blocking factor. OS=IP*BF.

BL FIXED 200 The Buffer Length to be used in
allocating the MP universal buffer
pool. This is expressed as the number
of bytes in the DATA field of the
maximum size IP message that can be
contained in a buffer.

CN CHAR(8) The Charge Number for submitting batch
jobs. A blank value causes the Charge
Number under which MP finds itself
running to be used.

JBS FIXED 508 The OS BLKSIZE for the Journal Data
Set.

JKT FIXED 1000 The maximum number of records to write
to the Journal before scheduling it for
printing.

JLR FIXED 504 The OS LRECL for the VB Journal Data
Set. If this is zero, V-format records
will be produced, and LRECL will be set
to JBS-4.

JMASK BIT(16) (16)'1'B The Journal enabling mask. A 1 bit
enables writing of the corresponding
message type, and a 0 bit disables it.
The message types currently defined,
with their bit numbers, are:

0: STATISTICS
1: COMMENT
2: ALARM
3: TSO COMMAND
4: TSO-RESPONSE
5: INCOMING MSG
6: OUTGOING MSG
7: INCOMING-DATA
8: INCOMING-BINARY
9: OUTGOING-DATA

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 83

10: OUTGOING BINARY
11: ACTION_REQUIRED

JO BIT(l) '0'B Journal-Online switch. A 1 bit causes
the journal to be written online, via
TPUT. This bit is independent of JS
and MU.

JS CHAR(l) 'A' Journal-SYSOUT class. A non-blank
value causes the journal to be written
to the indicated SYSOUT class. This is
independent of JO and MU.

NJ CHAR(8) ' The value of NYJOB in the Exchange
window connecting MP with the network.

HT CHAR(8) ' ' The value of MYTAG in the Exchange
window connecting NP with the network.
A blank value causes the USERID under
which MP finds itself running to be
used.

MU CHAR(8) ' ' The Monitoring Userid. This represents
a TSO Userid to which journal data will
be transmitted as written, if and when
the user is logged on. If it is blank,
no such transmission occurs. This is
independent of JS and JO.

NA BIT(l) '0'B The No-ASCII switch. A I bit causes
translation between EBCDIC and ASCII to
be suppressed. This is used for local
testing.

NB FIXED 40 The number of internal message buffers
to be contained in NP's universal
buffer pool. Small numbers save core.

NE BIT(l) '0'B The No-Error switch. A 1 bit
suppresses PLI STAE processing. This
is used for testing.

NF FIXED 12 The number of asynchronous functions to
activate, this is only used for
testing.

NX FIXED 10 The number of Exchange operations that
may be pending on the output channel of
the window connecting MP to the
network. Large values effect a sort of
'blocking' on this channel.

OlD CHAR(S) 'OUTPTTI The third-level index name to be used
for MP Standard System Output data
sets.IiI

qdL

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 84

PW CHAR(8) ' ' The Password to be used for submitting
batch jobs.

QN CHAR(8) 'NSWOUTPT' The GMF Queue name to be used for
notification from CCN's SPOOL3 output
writer to MP.

SD CHAR(8) IW' The SYSOUT Destination to be specified
when submitting batch jobs.

TI FIXED 5 The Timer Interval, in minutes, to
govern the frequency of performing the
periodic functions assigned the TIMER
function.

YJ CHAR(8) 'ARPA' The value of YOURJOB in the exchange
window connecting MP with the network.

YT CHAR(8) 'IPTASK2' The value of YOURTAG in the exchange
window connecting MP with the network.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

9.6. INSTALLING NPPAE8

Installing and maintaining MP involves various libraries
and data sets. When running under MVT, MP will almost
always have to be overlayed, at least to the point of
keeping GETPARM and its GET DATA support out of the machine
except during MP initialization.

9.6.1. DATA SETS

The following data sets are typically maintained as a
part of MP:

* The Source Library contains the PL/I and
Assembler-language source modules. Each of these is so
designed as to produce an object deck terminated by a
NAME card, and in some cases, other Linkage Editor
control statements.

* The Compile-Time Library contains various %INCLUDE
packets needed to compile PL/I routines. Note that no
special Assembler-language macros are defined for MP.

* The Module Load Library contains load modules produced
by individually compiling the members of the Source
Library. It is redundant, and need not actually be
kept, although it is a convenience in updating MP.

* The Final Load Library contains the executable copies
of MP and IKJPUTL.

9.6.2. OVERLAY STRUCTURE

In desigining an overlay structure for MP, the important
point is to isolate GETPARM and all its IBM library
routines from the rest of the program. This represents
about 14K of code which, once used, is worthless.

Technically, all the Asynchronous Functions can reside in
exclusive segments. However, performance will be
seriously degraded if EXIN, EXOUT, and FTS cannot operate
without overlay activities. A suggested structure is:

* ROOT SEGMENT: All code not placed elsewhere.

* Segment 2: GETPARM and all its IBM support.

* Segment 3: EXIN, EXOUT, FTS, and all Exchange
Management routines.

* Segment 4: GENERAL, OENSUB, NOTIFY, STATUS, OPR,
MAKENOT, TIMER, and all Job Management routines except
GMOPEN.

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 86

Modules that must reside in the root segment of any
program in which they are used include GMOPEN and PERM.

Note that it is necessary to leave reference IHEERRA
unresolved.

An easy way to ensure that all common areas and files are
in the root segment is to include the output of compiling
COMMONS. You can use a REPLACE to get rid of **DUMMY1,
**DUMMY2, PLISTART, and PLIMAIN in the module.

The following STATIC EXTERNAL control sections will then

reside in the root segment:

* COMMONI - The Master common block;

* COMNOTE - NOTIFY's static data;

* COMSTAT - STATUS' static data;

* COMEX - Static data for both EXIN and EXOUT;

* COMGEN - GENERAL's static data;

* COMFTS - Static data for all five FTS functions;

* COMOPR - OPR's static data;

* COTIM - TIMER's static data;

* ERRIDS - standard error codes referenced by most

callers of COMMAND.

* a.

'4 ..

Apri IP SERVER FOR NSW
Apri 1,1976 -- CCN/TR7

9.6.3. MP MODULE STRUCTURES

Module Lang Entries Extrefs Commons TSO Commands

ACTSTAT ASK ACTSTAT

COMEXEC ASK COMEXEC IKJGETL
COMFIN IKJPTGT
COMINIT IKJPUTL

COMMAND PLI COMMAND COMEXEC COMMONi
JOURNAL

COMMONS PLI COMEX
COMFTS
COMGEN
COMMON.
COMNOTE
CONOPR
COMSTAT
CONTIM
ERRIDS

DSNHIST PLI HISTIN COMMON.
HISTOUT

COPYQDEQ PLI COPYQ JOURNAL COMMON 1
ENO NEGPTR
NDEQ XQTOE

XETOA

EXDONE PLI EXDONE COMMONI

EXIN PLI EXIN COPYQ COMEX
RSEXI ENQ COMFTS

EXCH CONGEN
EXDONE COMMONi
JOURNAL CONSTAT
NDEQ
XATOS

EXOUT PLI EXOUT COPYO COMEX
RSEXO ENO COMFTS

EXCH COMMON 1
EXDONE
EXWAIT
NDEQ

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 88

Module Lag Entries Extrefs Commons TSO Commands

PTS PLI FTS COMMAND COMFTS ALLOC
RSFTS COPYQ COMMONI DELETE

ENQ FREE
HISTIN IFREE
HISTOJT RELEASE
JOURNAL
LOOKUP
MAKEP
NDEQ
OUTDSN
SCANNER
TBEGIN
TEND

GENERAL PLI GENERAL COMMAND COMFTS ALLOC
RSGEN COPYQ COMGEN ATTRIB

ENO COMMONI CANCEL
JOURNAL COMSTAT DELETE
JTDEL RFREE
LOOKUP IFREE
MAKEE RENAME
NDEQ
QENSUB
OUTDSN
PE RM
SCANNER

GETPARM PLI GETPAR4 COMEX
COMFTS
COMGEN
COMMONi
COMNOTE
COMOPR
COMSTAT
COMTIM
ERRI DS

HEX ASK HEX

IDINIT ASK4 IDINIT

IKJPLITL ASK IKJGETL
I KJPTGT
IKJPUTL

JOBMGT PLI JTADD COMMAND COMMONi DELETE
JTDEL ENQ COMSTAT
JTREAD JOURNAL
MAKENOT UNHEX
OUTDSN

-aim

AN IP SERVER FOR NSW
April 1, 1976 -- CCN/TR7

PAGE 89

Module Lang Entries Extref s Commons TSO Commands

JOURNAL PLI JDSFIN COMMAND COMMONi ALLOC
JDSINIT TPUT FREE
JOURNAL TPUTUID FREE

LOOKUP ASH LOOKUP

MAINPGK PLI MAINPGM COMFIN COMEX
COMINIT COMFTS
ENQ COMMON1
EXIN
EXCLOSE
EXOPEN
EXOUT
EXWAI T
FTS
GENERAL
GET PA RM
IDINIT
JDS FIN
JDSINIT
JOURNAL
NOERR
NOTIFY
OPR
PLIDUMP
STATUS
RSEXI
RSEXO
RSFTS
RSGEN
RSNOT
RSOPR
RSTAT
RSTIM
TIMER

MAKE? ASK MAKEF
MAKEE

NEGPTR ASK NEGPTR

NOTIFY PLI NOTIFY JOURNAL COMMONi
RSNOT JTADD COMNOTE
GKCLOSE
GKQUEUE
GKOPEN
GKUSER
MAKENOT
NEGPTR
NDEQ
UNHEX

AN IP SERVER F'OR NSW
April 1, 1976 -- CCN/TR7

PAGE 90

Module EaEntries Extref s Commons TSO Commands

QENSUB ASK QENSUB

OPR P1.1 OPR NDEQ COMMON1

RSOPR CQMOPR

PERM ASK PERM

SCANNER PLI SCANNER

STATUS PLI RSSTAT COPYEQ COMMON1
STATUS ENO COMSTAT

HEX
INTMT
JTDEL
JT READ
MAKENOT
NDEQ
SCANNER
TMTSTAT

TIMER PE.I RSTIM JDSFIN COMMON1
TIMER JDSINIT CONNOTE

JOURNAL COMTIM
NEGPTR
STIMER

TINSRVS ASK STIMER
TBEGIN
TEND

TMTSTAT ASK INTNT
TMTSTAT

UNHEX ASK UNHEX

XLATE ASK XATOB CCNTRATE
XETOA CCNTRETA

EA vb

